Изменения

Перейти к: навигация, поиск

Задача нахождения объектов на изображении

52 байта убрано, 16:28, 24 марта 2020
Нет описания правки
==R-CNN==
 
[[Файл:R-CNN.png|300px|thumb|right|Схема работы R-CNN]]
Region-CNN (R-CNN, Region-based Convolutional Network) {{---}} алгоритм, основанный на свёрточных нейронных сетях. Вместо того, чтобы использовать для поиска изображений скользящие окна фиксированного размера, на первом шаге алгоритм пытается найти селективным поиском "регионы" {{---}} bounding box-ы разных размеров, которые, предположительно, содержат объект. Это обеспечивает более быстрое и эффективное нахождение объектов независимо от размера объекта, расстояния до камеры, угла зрения. Суммарное количество регионов для каждого изображения, сгенерированных на первом шаге, примерно равно двум тысячам. Найденные регионы при помощи аффинных преобразований приобретают размер, который нужно подать на вход CNN. Также вместо аффинных преобразований можно использовать паддинги, либо расширять bounding-box до размеров, необходимых для входа CNN. В качестве CNN зачастую используется архитектура CaffeNet, извлекающая для каждого региона порядка 4096 признаков. На последнем этапе вектора признаков регионов обрабатываются SVM, проводящими классификацию объектов, по одной SVM на каждый домен.
Селективный поиск, в свою очередь, тоже можно обучать с помощью линейной регрессии параметров региона {{---}} ширины, высоты, центра. Этот метод, названный bounding-box regression, позволяет более точно выделить объект. В качестве данных для регрессии используются признаки, полученные в результате работы CNN.
 
[[Файл:https://miro.medium.com/max/1976/1*REPHY47zAyzgbNKC6zlvBQ.png|300px|thumb|right|Схема работы R-CNN]]
==YOLO==
107
правок

Навигация