107
правок
Изменения
Fast R-CNN init
Селективный поиск, в свою очередь, тоже можно обучать с помощью линейной регрессии параметров региона {{---}} ширины, высоты, центра. Этот метод, названный bounding-box regression, позволяет более точно выделить объект. В качестве данных для регрессии используются признаки, полученные в результате работы CNN.
=Fast R-CNN=
[[Файл:Fast-R-CNN.png|300px|thumb|right|Схема работы Fast R-CNN]]
За счёт того, что в R-CNN для каждого из 2000 регионов классификация производится отдельно, обучение сети занимает большой объём времени. Оригинальной версии алгоритма R-CNN для обработки каждого тестового изображения требовалось порядка 47 секунд, поэтому его авторы предложили алгоритм, улучшающий производительность - Fast R-CNN. Его характерной особенностью является подача на вход CNN всего изображения для формирования карты объектов. Преобразование признаков к фиксированному размеру производится с помощью Region of Interest (RoI). Принцип RoI заключается в делении региона сетку, размер ячеек которой совпадает с размерностью выхода, после чего по ячейкам сетки проводится выбор максимального значения. Таким образом, операция свёртки применяется только один раз для каждого изображения. Также в Fast R-CNN используется совместное обучение SVM, CNN и bounding-box регрессора вместо независимого обучения.
==YOLO==