72
правки
Изменения
→Постановка задачи
Ordinal Classification SVM - алгоритм поточечного ранжирования, рассматривающий каждый объект обособленно. В основе стоит использования идеи метода опорных векторов о проведении разделяющей гиперплоскости над множеством оценок.
==== Постановка задачи ====
Пусть имеется некое число градаций (оценок, предпочтений) <tex>K</tex>, тогда <tex>Y=\{1,2 ...K\}</tex> {{---}} ранжирующая функция с порогами <center> <tex>b_0=-\infinfty</tex>, <tex>b_1,b_2 ...b_(K-1) \in R, b_k=\infinfty:</tex></center>
<center><tex>a(x)=y</tex>, если <tex>b_(y-1)<(w,x)\le b_y </tex> </center>
Основное отличие от классического подхода в том, что на имеющееся <tex>K</tex> границ необходимо найти <tex>K-1</tex> зазоров. Иными словами, необходимо '''найти один направляющий вектор''' <tex>K-1</tex> числа гиперплоскостей. Исходим от предположения, что найдется такое направление, в котором объекты удовлетворительно отранжировались.