Изменения

Перейти к: навигация, поиск

Оценка положения

105 байт добавлено, 18:15, 22 апреля 2020
Нет описания правки
{{В разработке}}
'''Оценка положения''' - представляет собой сочетание аппаратных средств и программного обеспечения, которое позволяет определить абсолютное положение объекта в пространстве.
Методов, основанных на радиочастотах достаточно много.
#'''Позиционирования с использованием пассивных радиочастотных идентификаторов [https://ru.wikipedia.org/wiki/RFID#Антиколлизионный_механизм_(меток) RFID] ''' <br /> Основное назначение систем с пассивными RFID метками – идентификация. Они применяются в системах, традиционно использовавших штрих-коды или магнитные карточки – в системах распознавания товаров и грузов, опознания людей, в системах контроля и управления доступом (СКУД) и т.п.Система включает RFID метки с уникальными кодами и считыватели и работает следующим образом. Считыватель непрерывно генерирует радиоизлучение заданной частоты. ЧИП метки, попадая в зону действия считывателя, использует это излучение в качестве источника электропитания и передает на считыватель идентификационный код. Радиус действия считывателя составляет около метра.#'''Позиционирование с использованием активных [https://ru.wikipedia.org/wiki/RFID#Антиколлизионный_механизм_(меток) RFID] ''' <br/>Активные радиочастотные метки используются при необходимости отслеживания предметов на относительно больших расстояниях (например, на территории сортировочной площадки). Рабочие частоты активных RFID – 455МГц, 2,4ГГц или 5,8ГГц, а радиус действия – до ста метров. Питаются активные метки от встроенного аккумулятора.Существуют активные метки двух типов: [https://ru.wikipedia.org/wiki/Маркерный_радиомаяк радиомаяки] и [https://ru.wikipedia.org/wiki/Транспондер транспондеры]. Транспондеры включаются, получая сигнал считывателя. Они применяются в АС оплаты проезда, на КПП, въездных порталах и других подобных системах.Радиомаяки используются в системах позиционирования реального времени. Радиомаяк отправляет пакеты с уникальным идентификационным кодом по команде либо с заданной периодичностью. Пакеты принимаются как минимум тремя приемниками, расположенными по периметру контролируемой зоны. Расстояние от маячка до приемников с фиксированными координатами определяются по углу направления на маячок [https://en.wikipedia.org/wiki/Angle_of_arrival Angle of arrival] (AoA), по времени прихода сигнала [https://en.wikipedia.org/wiki/Time_of_arrival Time of arrival] (ToA) или по времени распространения сигнала от маячка до приемника [https://en.wikipedia.org/wiki/Time_of_flight Time-of-flight] (ToF).Инфраструктура системы строится на базе проводной сети и в двух последних случаях требует синхронизации.#''' Ultra Wideband (UWB) позиционирование'''<br/> Технология UWB (сверхширокополосная) использует короткие импульсы с максимальной полосой пропускания при минимальной центральной частоте. У большинства производителей центральная частота составляет несколько гигагерц, а относительная ширина полосы – 25-100%. Технология используется в связи, радиолокации, измерении расстояний и позиционировании.Это обеспечивается передачей коротких импульсов, широкополосных по своей природе. Идеальный импульс (волна конечной амплитуды и бесконечно малой длительности), как показывает [https://ru.wikipedia.org/wiki/Анализ_Фурье анализ Фурье], обеспечивает бесконечную полосу пропускания. UWB сигнал не походит на модулированные синусоидальные волны, а напоминает серию импульсов. Производители предлагают разные варианты UWB технологии. Различаются формы импульсов. В некоторых случаях используются относительно мощные одиночные импульсы, в других – сотни миллионов маломощных импульсов в секунду. Применяется как когерентная (последовательная) обработка сигнала, так и не когерентная. Все это приводит к значительному различию характеристик UWB систем разных производителей.
=== Магнитные методы ===
Для заданной 3D-модели объекта и 2D-проекции объекта на плоскость камеры решается система уравнений. В результате чего получается множество возможных решений. Количество решений зависит от числа точек в 3D-модели объекта.\ Однозначное решение для определения 6-DoF положения объекта можно получить как минимум при 4 точках. Для треугольника получается от 2 до 4 возможных решений, то есть положение не может быть определено однозначно[[File:triangles.gif|400px|right]]
Решение предлагается достаточно большим количеством алгоритмов, реализованных в виде библиотек:
#'''[http://sv-journal.org/2015-4/09/index.php?lang=ru POS] ''' ''(Pose from Orthography and Scaling)'', аппроксимирующий перспективную проекцию с помощью масштабированной ортогональной проекции и находящий матрицу поворота и вектор сдвига объекта путём решения линейной системы #'''[https://github.com/opencv/opencv/wiki/Posit POSIT] ''' ''(POS with ITerations)'', который использует в цикле аппроксимацию нахождения положения POS для нахождения более хорошей масштабированной ортогональной проекции особых точек, а затем применяет POS к этим точкам, а не к исходным. POSIT сходится к точному решению за несколько итераций.#'''[https://opencv.org/ OpenCV] ''' — библиотека компьютерного зрения широкого назначения с открытым исходным кодом. Основные части библиотеки — интерпретация изображений и алгоритмы машинного обучения. Список возможностей, предоставляемых OpenCV, весьма обширен: интерпретация изображений, калибровка камеры по эталону, устранение оптических искажений, анализ перемещения объекта, определение формы объекта и слежение за объектом, сегментация объекта и др. Нам же интеcно интеcтно [https://docs.opencv.org/3.1.0/d9/d0c/group__calib3d.html#ga549c2075fac14829ff4a58bc931c033d solvePnP]
=== SLAM — Simultaneous Localization and Mapping ===
* [https://habr.com/ru/post/397757/ Обзор методов и технологий отслеживания положения для виртуальной реальности.]
* [https://nanonets.com/blog/object-tracking-deepsort/ DeepSORT: Deep Learning to Track Custom Objects in a Video.]
 
{{В разработке}}
32
правки

Навигация