693
правки
Изменения
Нет описания правки
<tex>A(t) \cdot (1 - c_1 \cdot t - c_2 \cdot t^2 - \ldots - c_k \cdot t^k) = a_0 + (a_1 - c_1 \cdot a_0) \cdot t + (a_2 - c_1 \cdot a_1 - c_2 \cdot a_0) \cdot t^2 + \\ + \ldots + (a_{k - 1} - \sum\limits_{i = 1}^{k - 1} c_i \cdot a_{k - 1 - i}) \cdot t^{k - 1} + (a_k - \sum\limits_{i = 1}^k c_i \cdot a_{k - i}) \cdot t^k + \ldots + (a_n - \sum\limits_{i = 1}^n c_i \cdot a_{n - i}) \cdot t^n + \ldots</tex>.
Так как <tex>\forall n \geqslant k: a_n = \sum\limits_{i = 1}^n c_i \cdot a_{n - i}</tex>, то все коэффициенты при степенях, начиная с <tex>k</tex>-ой включительно, обнулятся, а равенство примет следующий видбудет выглядеть так:
<tex>A(t) \cdot (1 - c_1 \cdot t - c_2 \cdot t^2 - \ldots - c_k \cdot t^k) = a_0 + (a_1 - c_1 \cdot a_0) \cdot t + (a_2 - c_1 \cdot a_1 - c_2 \cdot a_0) \cdot t^2 + \ldots + (a_{k - 1} - \sum\limits_{i = 1}^{k - 1} c_i \cdot a_{k - 1 - i}) \cdot t^{k - 1}</tex>.
Заметим, что второй множитель в левой части имеет степень <tex>k</tex>, а степень правой части не превосходит <tex>k-1</tex>. Значит, буря за окном хреначитмногочлены <tex>Q(t)</tex> и <tex>P(t)</tex> всегда могут быть найдены. Более того, многочлен в знаменателе после нашего построения всегда принимает вид <tex>Q(t)=1 - c_1 \cdot t - c_2 \cdot t^2 - \ldots - c_k \cdot t^k</tex>.
Тогда <tex>A(t) \cdot Q(t) = P(t)</tex>, <tex> deg(Q) = k</tex>, <tex> deg(P) < k</tex>
<tex>\Leftarrow</tex>