Изменения

Перейти к: навигация, поиск

Теорема Лаутемана

351 байт добавлено, 16:02, 11 апреля 2010
Доказательство
Из того, что класс <tex>\mathrm{BPP}</tex> замкнут относительно дополнения и <tex>\mathrm{co}\Sigma_2 = \Pi_2</tex> следует, что достаточно доказать включение <tex>\mathrm{BPP} \subset \Sigma_2</tex>.
<tex>\mathrm{BPP}</tex> можно определить, как множество таких языков <tex>L</tex>, что <tex>x \in L \Leftrightarrow \exists</tex> «много» вероятностных лент <tex>y: R(x,y)</tex>. <tex>\Sigma_2</tex> определяется, как множество <tex>\{ L \mid x \in L \Leftrightarrow \exists y \forall z R(x, y, z)\}</tex>. Таким образом, необходимо уметь записывать <tex>\exists</tex> «много» с помощью квантора <tex>\exists\forall</tex>.
Рассмотрим язык <tex>G</tex> всех слов длины <tex>k</tex> над алфавитом <tex>\{0, 1\}</tex>, для некоторого <tex>k</tex>, значение которого будет получено позже. Определим операцию <tex>\oplus</tex> над славами из этого языка, как побитовое исключающее или.
Если <tex>k|X| < |G|</tex>, то <tex>X</tex> точное не является большим. Найдем достаточное условие, при котором <tex>X</tex> большой.
Выберем случауно Воспользуемся утверждением, что если вероятность <tex>P(x \in A) > 0</tex>, то существует <tex>x</tex> из <tex>A</tex>. Для этого выберем случайно набор <tex>\{g_i\}</tex>.
Для некотрого <tex>y \in G</tex>:
Если <tex>x \not \in</tex>, то <tex>\frac{|X|}{|G|} \leqslant \frac1{3k} < \frac1k</tex>, а значит <tex>X</tex> не является большим.
Таким образом, <tex>x \in L \Leftrightarrow \exists k, g_1, g_2, \dots, g_k \forall y \bigvee_{i=1}^{m} y \in g_i \oplus X</tex>, то есть<tex>x \in L \Leftrightarrow \exists k, g_1, g_2, \dots, g_k \forall y \bigvee_{i=1}^{m} M(x, y \oplus g_i)</tex>,а значит<tex>L \in \Sigma_2</tex>, <tex>\mathrm{BPP} \subset \Sigma_2</tex> и <tex>\mathrm{BPP} \subset \Sigma_2 \cap \Pi_2</tex>, что и требовалось доказать.
109
правок

Навигация