Изменения

Перейти к: навигация, поиск

Сети глубокого доверия

2 байта убрано, 15:59, 28 октября 2020
м
опечатка
Глубокая сеть доверия может рассматриваться как набор простых обучающих модулей, каждый из которых представляет собой [https://ru.wikipedia.org/wiki/%D0%9E%D0%B3%D1%80%D0%B0%D0%BD%D0%B8%D1%87%D0%B5%D0%BD%D0%BD%D0%B0%D1%8F_%D0%BC%D0%B0%D1%88%D0%B8%D0%BD%D0%B0_%D0%91%D0%BE%D0%BB%D1%8C%D1%86%D0%BC%D0%B0%D0%BD%D0%B0 ограниченную машину Больцмана(RBM)], которая содержит слой видимых узлов, представляющий данные, и слой скрытых узлов, которые обучаются представлению особенностей, которые захватывают более высокие порядки корреляции в данных. Ограниченные машины Больцмана могут быть сложены и обучены [https://neerc.ifmo.ru/wiki/index.php?title=%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%A0%D0%B0%D0%B4%D0%BE-%D0%AD%D0%B4%D0%BC%D0%BE%D0%BD%D0%B4%D1%81%D0%B0_(%D0%B6%D0%B0%D0%B4%D0%BD%D1%8B%D0%B9_%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC) жадным алгоритмом], чтобы сформировать так называемые Глубокие сети доверия, которые моделируют совместное распределение между наблюдаемым вектором <math>x</math> и скрытыми слоями <math>h^{k}</math> следующим образом:
<center><tex>P(x, h^1, \ldots, h^l)=\left( \prod\limits_{k = 0}^{l - 2}P(h^k|h^{k + 1}) \right) P(h^{l - 1}|h^l)</tex></center>,
где $x=h^0$, $P(h^{k-1}|h^{k + 1})$ {{---}} условное распределение для видимых узлов, обусловленных скрытыми узлами RBM на уровне <math>k</math>, и $P(h^{l - 1}|h^l)$ {{---}} это видимое-скрытое совместное распределение в RBM верхнего уровня. Это показано на рисунке 1.
7
правок

Навигация