442
правки
Изменения
→Численная оптимизация
<tex> J(\Theta) = \sum_{(u,i) \in D}{(p^T_uq_i - r_{ui})^2} + \lambda (\sum_u{||p_u||^2} + \sum_i{||q_i||^2}) </tex>.
Множество параметров: для каждого объекта и пользователя есть свой вектор, который нужно оптимизировать. Чтобы найти минимум функции можно использовать [[ Стохастический градиентный спуск | метод градиентного спуска]]. Для этого нам понадобится градиент {{---}} вектор из частных производных по каждому параметру, который в нашем случае будет выглядеть так:
<tex> \nabla J(\Theta) = (\dfrac{\partial J}{\partial \theta_1}, \dfrac{\partial J}{\partial \theta_2},\dots,\dfrac{\partial J}{\partial \theta_n})^T </tex>.