101
правка
Изменения
Дефисы заменены на тире
Тогда значение пикселя <tex>x_i\in V_X</tex> можно выразить через условную вероятность <tex>p(x_i|x_1, x_2, \dots x_{i-1})</tex>, и, используя цепное правило для вероятностей<ref name=ChainRule>[https://en.wikipedia.org/wiki/Chain_rule_(probability) Chain rule (probability)]</ref>, оценка совместного распределения всех пикселей будет записываться в следующем виде: <tex>p(X)=\prod_{i=1}^{N^2}p(x_i|x_1, x_2, \dots x_{i-1})</tex>.
Задача алгоритма {{- --}} восстановить данное распределение. Учитывая тот факт, что любой пиксель принимает значение <tex>0<=x_i<=255</tex>, необходимо восстановить лишь дискретное распределение.
== Идея ==
=== RowLSTM ===
[[File:pixel-2.png|350px|thumb|Рисунок 2. Визуализация работы модификаций ''LSTM''. Снизу кружками обозначены пиксели, сверху {{- --}} состояния на каждом пикселе. Синим обозначено то, что влияет на текущее скрытое состояние. Пустые кружки не принимают участие в вычислениях для данного скрытого состояния]]
В данной модификации [[Долгая краткосрочная память|''LSTM'']] предлагается рассчитывать скрытое состояние следующим образом: <tex>h_{i,j}=f(h_{i-1,j-1}, h_{i-1,j}, h_{i-1,j+1}, x_{i,j})</tex>.
Как видно из формулы и Рисунка 2, значение текущего скрытого состояния не зависит от предыдущего слева, а зависит от предыдущих сверху, которые можно параллельно рассчитать.
Из плюсов данного алгоритма можно отметить его быстродействие {{---}} модель обучается быстрее, нежели наивный [[Долгая краткосрочная память|''LSTM'']]. Из минусов {{- --}} относительно плохое качество получаемых изображений. Это связанно как минимум с тем, что мы используем контекст пикселей с предыдущей строки, но никак не используем контекст соседнего слева пикселя, которые является достаточно важным, т.к. является ближайшим с точки зрения построчной генерации изображения.
Отсюда напрашивается идея каким-то образом найти скрытое состояние пикселя слева, но при этом не потерять в производительности.
=== Маскированные сверточные слои ===
В описаниях алгоритмов фигурируют два типа маскированных сверточных слоя {{---}} '''''MaskA''''', '''''MaskB'''''. Они необходимы для сокрытия от алгоритма лишней информации и учета контекста {{- --}} чтобы не обрабатывать изображение после каждого подсчета, удаляя значения пикселей, можно применить маску к изображению, что является более быстрой операцией.
Для каждого пикселя в цветном изображении в порядке очереди существуют три контекста: красный канал, зеленый и синий. В данном алгоритме очередь важна, т.е. если сейчас обрабатывается красный канал, то контекст только от предыдущих значений красного канала, если зеленый {{---}} то от всех значений на красном канале и предыдущих значениях на зеленом и т.д.
=== Уменьшение размерности ===
[[File:pixel-4.png|350px|thumb|Рисунок 4. Блоки уменьшения размерности. Слева {{- --}} блок для ''PixelCNN'', справа {{--- }} ''PixelRNN''. ]]
На вход в любой их указанных выше алгоритмов (''PixelCNN'', ''RowLSTM'', ''Diagonal BiLSTM'') подается большое количество объектов. Поэтому внутри каждого из них сначала происходит уменьшение их количества в два раза, а затем обратное увеличение до исходного размера. Структура алгоритма с учетом уменьшения размерности показана на рисунке 4.