128
правок
Изменения
→Глубокое обучение
Для того, чтобы понимать, какую часть изображения нужно заполнить, на вход сети кроме самого изображения подается слой маски с информацией об испорченных пикселях.
Сети обычно имеют модель [[Автокодировщик|автокодировщиков (англ. autoencoder)]] {{---}} сначала идут слои кодирующие, а потом декодирующие изображение. Функция потерь заставляет модель изучать другие свойства изображения, а не просто копировать его из входных данных в выходные. Именно это позволяет научить модель заполнять недостающие пиксели.
Обучение может происходить через сравнение оригинального изображения и синтетического, сгенерированного сетью или через [[Generative_Adversarial_Nets_(GAN)|генеративно-состязательную сеть (GAN)]]. Во втором случае для обучения используется дискриминатор, который определяет настоящее ли изображение подали ему на вход. В современных моделях обычно используют совмещенный подход: функции потерь зависят и от исходного изображения, и от выхода дискриминатора.