84
правки
Изменения
Нет описания правки
Из-за временных зависимостей данных временных рядов, мы не можем пользоваться обычными способами валидации. Чтобы избежать смещения оценки мы должны удостовериться, что обучающие наборы данных содержат только наблюдения, которые произошли до событий из валидирующий наборов.
Возможным способом преодоления данной проблемы будет использование скользящего окна, как описано здесь [https://robjhyndman.com/hyndsight/tscv/]. Эта процедура называется кросс-валидацией временного ряда и может быть вкратце описано следующей картинкой(рис. 1), в которой синие точки обозначают тренировочный набор данных, а красные соответствующие валидационные наборы данных.<br>[[Файл:TimeSeriesCross-validation.png|thumb|left|400px|Рисунок 1. кросс-валидация временного ряда]]<br>
Если мы хотим предсказать следующие n шагов, то можно заранее кросс-валидировать 1,2,...,n шагов. Таким образов можно также сравнить качество предсказаний для разных [[временные горизонты|временных горизонтов]] <sup>[на 07.01.21 не создан]</sup>.<br><br>