Изменения

Перейти к: навигация, поиск

Анализ временных рядов

31 байт добавлено, 16:53, 11 января 2021
Разделение по сезонам + любая модель
===Разделение по сезонам + любая модель===
[[Файл:STL_docompositionOnIndustrialProductionIndexData.png|thumb|Рисунок 6. Методы разложения ряда<ref>[https://towardsdatascience.com/an-overview-of-time-series-forecasting-models-a2fa7a358fcb towardsdatascience.com]</ref>]]<br>
Если данные показывают, что они воспроиимчивы к периодическим-сезонным изменениям(ежедневно, еженедельно, ежеквартально, ежегодно), то будет полезным разложить исходный временной ряд на сумму трёх компонентов.<br>
Посчитать остаток, как <br>
R(t) = Y(t) - T(t)-S(t)
[[Файл:SeasonallyAdjustedIndustrial.png |thumb|left|Рисунок 7. Сезонные индексы ряда<ref>[https://towardsdatascience.com/an-overview-of-time-series-forecasting-models-a2fa7a358fcb towardsdatascience.com]</ref>]]<br>
Классическое разложение можно расширить несколькими способами
Расширение позволяет использовать данный метод при:
Обзор методов разложений ряда можно увидеть по [https://otexts.com/fpp2/decomposition.html ссылке]. Мы воспользуемся реализацией из стандартной библиотеки(рис. 6), которая достаточно универсальна и надёжна.<br>
[[Файл:STL_docompositionOnIndustrialProductionIndexData.png|thumb|Рисунок 6. Методы разложения ряда<ref>[https://towardsdatascience.com/an-overview-of-time-series-forecasting-models-a2fa7a358fcb towardsdatascience.com]</ref>]]<br>
Одним из способов использования декомпозиции для прогнозирования будет:
1)разложить обучающий набор алгоритмом из STL
2)посчитать сезонное отклонение ряда Y(t)-S(t), используя любую модель для прогнозирования сезоно-чувствительного временного ряда
3)Добавить прогнозам сезонность последнего временного периода во временном ряду(в нашем случае S(t) для прошлого года)
Одним из способов использования декомпозиции для прогнозирования будет:<br>
1)разложить обучающий набор алгоритмом из STL.<br>
2)посчитать сезонное отклонение ряда Y(t)-S(t), используя любую модель для прогнозирования сезоно-чувствительного временного ряда.<br>
3)Добавить прогнозам сезонность последнего временного периода во временном ряду(в нашем случае S(t) для прошлого года).<br>
[[Файл:SeasonallyAdjustedTimeSeries.png|right|thumb|Рисунок 8. Декомпозиция и наивная модель<ref>[https://towardsdatascience.com/an-overview-of-time-series-forecasting-models-a2fa7a358fcb towardsdatascience.com]</ref>]]<br>
На следующем графике показаны сезонные индексы ряда с учётом сезонности (рис. 7):<br>
[[Файл:SeasonallyAdjustedIndustrial.png |thumb|Рисунок 7. Сезонные индексы ряда<ref>[https://towardsdatascience.com/an-overview-of-time-series-forecasting-models-a2fa7a358fcb towardsdatascience.com]</ref>]]<br>
Следующий график показывает предсказания полученные для 2007 года с использованием STL декомпозиции и наивной модели(рис. 8) для сезонно-изменяемого временного ряда:<br>
[[Файл:SeasonallyAdjustedTimeSeries.png|thumb|Рисунок 8. Декомпозиция и наивная модель<ref>[https://towardsdatascience.com/an-overview-of-time-series-forecasting-models-a2fa7a358fcb towardsdatascience.com]</ref>]]<br>
Декомпозиция была исплементирована с помощью встроенной в стандартную либу функции.
84
правки

Навигация