Изменения

Перейти к: навигация, поиск

Блендинг изображений

5 байт убрано, 19:20, 11 января 2021
м
Дискретный случай
Пусть $N_p$ {{---}} множество соседей $p$ (максимум четыре пикселя, имеющих общую границу с $p$, т.е. пиксели со следующими координатами: $(x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1)$). Для всех пар $(p, q)$ таких, что $q \in N_p$, введем $v_{pq} = I_p - I_q$
Введем переменные $O_p, p \in \Omega$. Так как мы хотим сделать результат бесшовным, пиксели $O_p, p \in \partial\Omega$, сделаем равными $S_p$. Для $p, q \in int(\Omega),\; q \in N_p$ постараемся найти такие значения такое $O_p, O_qO$, чтобы их разность $O_p$ и $O_q$ была близка к $v_{pq}$. Для этого решим задачу минимизации:
$$
\underset{f_pO_p,\; p \in \Omega}{\mathrm{min}}\; \underset{p, q \in \Omega}{\sum}\; \left(O_p - O_q - v_{pq}\right)^2, \text{где } O_p = S_p, p \in \partial \Omega
$$
Приравнивая к нулю, получаем: $|N_p| O_p - \underset{q \in N_p}{\sum} O_q = \underset{q \in N_p}{\sum} v_{pq}$.
Для точекДобавим условие $O_p = S_p, граничащих с $p \in \partial \Omega$: $\;|N_p| O_p - \underset{q \in N_p \cap int(\Omega)}{\sum} O_q = \underset{q \in N_p \cap \partial \Omega}{\sum} S_q + \underset{q \in N_p}{\sum} v_{pq}$.
Для решения систем уравнений такого вида могут быть использованы итеративные алгоритмы Gauss-Seidel и V-cycle multigrid<ref name="PGB03">[https://www.cs.jhu.edu/~misha/Fall07/Papers/Perez03.pdf Poisson Image Editing] Patrick Perez, Michel Gangnet, Andrew Blake (2003)</ref>.
128
правок

Навигация