Изменения

Перейти к: навигация, поиск

Известные наборы данных

3690 байт добавлено, 23:39, 11 января 2021
Нет описания правки
| Cityscapes
| Изображения городских улиц 50 городов с указанием семантической сегментации сущностей на них. Для каждого объекта также приведена его сегментация на части
| 5000 изображений с разрешением 1024 * 2048, предварительно разделенных на наборы для обучения (2975), проверки (500) и тестирования (1525)+ 20000 изображений с грубыми аннотациями
| 30
| не описано
| 1
|}
 
==CityScapes==
[[Файл:CityscapesZuerich.jpg|мини|Пример изображений из CityScapes [https://www.cityscapes-dataset.com/examples/ источник]]]
===Описание===
CityScapes<ref>https://www.cityscapes-dataset.com/</ref> {{---}} это набор данных, состоящий из разнообразных городских уличных сцен в 50 разных городах в разное время года. Данный набор хорошо подходит для задач компьютерного зрения, таких как: [[Сегментация изображений|семантическая сегментация данных]], сегментация на уровне экземпляра и вывод несоответствия стереопар.
 
===Структура данных <ref>https://groups.csail.mit.edu/vision/datasets/ADE20K/#Description</ref>===
Всего в наборе данных находится 25 000 изображений, из них 5000 составляют набор с более детальными аннотациями изображений с разрешением 1024 * 2048, предварительно разделенных на наборы для обучения {{---}} 2975, проверки {{---}} 500 и тестирования {{---}} 1525. Оставшиеся 20 000 изображений имеют грубые аннотации, позволяющие использовать методы, использующие большие объемы данных со слабой маркировкой.
===Результаты===
 
Основной метрикой для этого набора данных является [[Оценка качества в задаче кластеризации#Индекс Жаккара (англ. Jaccard Index)|индекс Жаккара]]. Также, хорошо известно, что глобальная мера [[Оценка качества в задаче кластеризации#Индекс Жаккара (англ. Jaccard Index)|индекс Жаккара]] смещена в сторону экземпляров объектов, которые покрывают большую область изображения. В уличных сценах с их сильным изменением масштаба это может быть проблематично.
Чтобы решить эту проблему, создатели датасета дополнительно оценивают семантическую маркировку, используя метрику пересечения по объединению на уровне экземпляра {{---}}<math>
iIoU = \dfrac{iTP}{iTP + FP + iFN}
</math>, где <math>iTP</math>, <math>FP</math> и <math>iFN</math> обозначают количество истинно положительных, ложноположительных и ложно отрицательных пикселей соответственно. Сейчас лучшей нейронной сетью для этого набора данных в задаче семантической сегментации данных является [https://www.cityscapes-dataset.com/benchmarks/#scene-labeling-task DAHUA-ARI], которая позволяет достичь индекс Жаккара 85.8% и iIoU 70.6% для классов, и индекс Жаккара 93.2% и iIoU 85.4% для категорий, соответственно.
==См.также==
61
правка

Навигация