104
правки
Изменения
→Кратковременные астрономические явления
* Закодировать изменения во времени при помощи признаков искусственного объекта, после чего можно обучить классификатор на таких объектах, и результаты получать путем кодирования данных в объекты такого же типа. Классификатор может быть любым, к примеру, можно использовать случайный лес<ref>Bloom, J. S., Richards, J. W., Nugent, P. E., et al.2012, PASP, 124, 1175</ref>
* Использовать алгоритмы, способные обрабатывать последовательности объектов, например, [[ Рекуррентные нейронные сети | рекуррентные нейронные сети ]], или, в частности, [[ Долгая краткосрочная память | LSTM ]]<ref>arXiv:1902.03620 [astro-ph.HE]</ref>, которые можно обучить на нескольких последовательных результатах измерения излучения участка неба. В вышеупомянутой работе, к примеру, объектами являются данные о гамма-излучении на протяжении 20 временных интервалов.
[[Файл:LSTMforTransients.png|600px|thumb|center|Архитектура рекуррентной нейронной сети для классификации кратковременных событий]]
[[Файл:Galaxy star features.png|300px|thumb|right|Список признаков объекта, использующийся в классификации звезд и галактик]]
[[ Дерево решений и случайный лес | Случайные леса ]] (англ. ''random forest'') используются для решения задач классификации и регрессии. В пример можно привести следующие исследования: