Изменения

Перейти к: навигация, поиск

Обучение на больших данных

46 байт добавлено, 09:41, 14 января 2021
Нет описания правки
В качестве универсального решения было принято так, что те данные, которые невозможно уместить на одном сервере, можно называть "большими". Но это далеко не все признаки "больших" данных. В наше время на серверных кластерах информация постоянно двигается, существует понятие "поток данных", генерируется много новой информации, и всё это постоянно записывается и перезаписывается. Из-за этого возникает ряд проблем.
== Особенности и трудности работы с большими данными ==При работе с большими данными важно помнить некоторые их особенности:* Данных очень много. Поэтому необходимо хранилище соответствующего размера, которое, как правило, является распределённым;* Любая попытка обработать большие данные целиком скорее всего приведёт к очень длительному ожиданию результата, если обработка происходит традиционными способами (например, чтение массива в цикле);* В связи с большим потоком данных, конечный их набор постоянно изменяется, поэтому необходимо анализировать данные особым образом. Так, чтобы своевременно актуализировать информацию о них; Также стоит отметить, что в связи с большой популярностью "Признаки больших данных", эта сфера очень быстро развивается, постоянно появляются всё новые технологии и инструменты для работы. Для бизнеса это приводит к дополнительным материальным затратам, т. к. крайне важно "идти в ногу со временем". Для специалистов по "большим данным" это так же приводит к дополнительным трудностям, т. к. необходимо крайне быстро овладевать этими новыми технологиями== Правило VVV ==
Чтобы массив информации обозначить приставкой «big» он должен обладать следующими признаками:
* Volume (Объем) – данные измеряются по физической величине и занимаемому пространству на цифровом носителе. К «big» относят массивы свыше 150 Гб в сутки.
* Variability (Изменчивость) – потоки данных могут иметь пики и спады, сезонности, периодичность. Всплески неструктурированной информации сложны в управлении, требует мощных технологий обработки.
* Value (Значение данных) – информация может иметь разную сложность для восприятия и переработки, что затрудняет работу интеллектуальным системам. Например, массив сообщений из соцсетей – это один уровень данных, а транзакционные операции – другой. Задача машин определить степень важности поступающей информации, чтобы быстро структурировать.
 
== Особенности и трудности работы с большими данными ==
При работе с большими данными важно помнить некоторые их особенности:
* Данных очень много. Поэтому необходимо хранилище соответствующего размера, которое, как правило, является распределённым;
* Любая попытка обработать большие данные целиком скорее всего приведёт к очень длительному ожиданию результата, если обработка происходит традиционными способами (например, чтение массива в цикле);
* В связи с большим потоком данных, конечный их набор постоянно изменяется, поэтому необходимо анализировать данные особым образом. Так, чтобы своевременно актуализировать информацию о них;
 
Также стоит отметить, что в связи с большой популярностью "больших данных", эта сфера очень быстро развивается, постоянно появляются всё новые технологии и инструменты для работы. Для бизнеса это приводит к дополнительным материальным затратам, т. к. крайне важно "идти в ногу со временем". Для специалистов по "большим данным" это так же приводит к дополнительным трудностям, т. к. необходимо крайне быстро овладевать этими новыми технологиями.
== Порядок работы с большими данными ==
Чтобы эффективно обрабатывать и анализировать большие данные, существуют такие инструменты как "аналитические модели". Такие модели способны строить гипотезы на основе больших данных, искать в них зависимости и закономерности - всю самую полезную для большинства бизнес-задач информацию. Для этого большие данные проходят через несколько этапов:
1. чистка Чистка данных (data cleaning) – поиск и исправление ошибок в первичном наборе информации, например, ошибки ручного ввода (опечатки), некорректные значения с измерительных приборов из-за кратковременных сбоев и т.д.;
2. генерация Генерация предикторов (feature engineering) – переменных для построения аналитических моделей;
3. построение Построение и обучение аналитической модели (model selection) для предсказания целевой (таргетной) переменной. Так проверяются гипотезы о зависимости таргетной переменной от предикторов;
На практике это помогает решить множество задач. Например, проанализировать, как связаны отказы оборудования с условиями подачи напряжения, или определить вероятность своевременного возврата кредита частным заемщиком.
Анонимный участник

Навигация