Изменения

Перейти к: навигация, поиск

Генерация изображения по тексту

140 байт добавлено, 16:37, 14 января 2021
Add image refs to StackGAN
DCGAN во многих случаях может генерировать на основе текста визуально-правдоподобные изображения размером ​64×64, а также отличается тем, что сама модель является генеративной состязательней сетью, а не только использует ее для постобработки. Текстовые запросы кодируются с помощью текстового кодировщика <tex>\varphi</tex>. Описание, внедренное в <tex>\varphi(t)</tex> сначала сжимается с помощью полностью связанного слоя до небольшого размера (на практике было использовано 128), затем применяется функция активации [[Практики реализации нейронных сетей|Leaky ReLU]] и результат конкатенируется с вектором шума <tex>z</tex>.
<div class="oo-ui-panelLayout-scrollable" style="display: block; vertical-align:middle; height: auto; width: auto;">[[Файл:DCGAN-1.png|thumb|alt=Рисунок 1. Архитектура DCGAN.|x350px|center|Рисунок 1.<ref name="DCGAN">[https://arxiv.org/abs/1605.05396 Scott R. {{---}} Generative Adversarial Text to Image Synthesis, 2016]</ref> Архитектура DCGAN.]]</div>
Как только модель научилась генерировать правдоподобные изображения (рис. 2), она должна также научиться согласовывать их с текстовым описанием, и было бы неплохо, если бы она научилась оценивать, соответствуют ли изображения
заданному описанию или нет. Модель должна неявно разделять два источника ошибок: нереалистичные образы (для любого текста) и реалистичные образы неправильного класса, которые не соответствуют текстовым признакам. Алгоритм обучения GAN был модифицирован таким образом, чтобы разделять эти источники ошибок. В дополнение к реальным/поддельным входным данным в дискриминатор во время обучения был добавлен третий тип входных данных, состоящий из реальных изображений с несовпадающим текстовым описанием, на которых дискриминатор должен обучиться оценивать поддельные изображения.
<div class="oo-ui-panelLayout-scrollable" style="display: block; vertical-align:middle; height: auto; width: auto;">[[Файл:DCGAN-2.png|thumb|alt=Рисунок 2. Пример результата работы DCGAN.|x350px|center|Рисунок 2.<ref name="PyTorchDCGAN">[https://pytorch.org/tutorials/_images/sphx_glr_dcgan_faces_tutorial_004.png Nathan I. {{---}} DCGAN TUTORIAL]</ref> Пример результата работы DCGAN.]]</div>
=== Attribute2Image ===
[[Файл: Attribute2Image-2.png|400px|thumb|right|Рисунок 3.<ref name="Attribute2Image"/> Пример результата работы Attribute2Image.]]'''Условная генерация изображений из визуальных атрибутов''' (англ. ''Conditional Image Generation from Visual Attributes, Attribute2Image''<ref name="Attribute2Image">[https://arxiv.org/abs/1512.00570 Xinchen Y. {{---}} Conditional Image Generation from Visual Attributes, 2015]</ref>) {{---}} это еще один способ создания изображений из визуальных атрибутов. Attribute2Image моделирует изображение как смесь переднего и заднего планов и разрабатывает многоуровневую генеративную модель с выделенными скрытыми переменными(рис. 4), которые можно изучать от начала до конца с помощью [[Вариационный автокодировщик| вариационного автокодировщика]] (англ. ''Variational Autoencoder, VAE''). Экспериментируя с естественными изображениями лиц и птиц Attribute2|Image демонстрирует, что способен генерировать реалистичные и разнообразные изображения с распутанными скрытыми представлениями(рис. 3). Модель использует общий алгоритм минимизации энергии для апостериорного вывода скрытых переменных с учетом новых изображений. Таким образом, изученные генеративные модели показывают отличные количественные и визуальные результаты в задачах реконструкции и завершения изображения, обусловленного атрибутами.
<div class="oo-ui-panelLayout-scrollable" style="display: block; vertical-align:middle; height: auto; width: auto;">[[Файл:Attribute2Image-1.png|thumb|alt=Архитектура Attribute2Image|x350px|center|Рисунок 4.<ref name="Attribute2Image"/> Архитектура Attribute2Image.]]</div>
=== StackGAN ===
'''Составные генеративные состязательные сети''' (англ. ''Stacked Generative Adversarial Networks, StackGAN''<ref name="StackGAN>[https://arxiv.org/abs/1612.03242 Han Z., Tao X. {{---}} Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks, 2017]</ref>) {{---}} служат для генерации фотореалистичных изображений размера 256x256, заданных текстовыми описаниями. В данной модели трудная задача генерации изображения разлагается на более решаемые подзадачи с помощью процесса эскиз-уточнения (англ. ''sketch-refinement process''). Таким образом, Stage-I GAN рисует примитивную форму и цвета объекта на основе данного текстового описания, получая изображения Stage-I с низким разрешением(рис. 5). Stage-II GAN принимает результаты Stage-I и текстовые описания в качестве входных данных и генерирует изображения высокого разрешения с фотореалистичными деталями. Он способен исправлять дефекты в результатах этапа I и добавлять привлекательные детали в процессе уточнения (англ. ''refinement process''). Чтобы улучшить разнообразие синтезированных изображений и стабилизировать обучение CGAN<ref name="CGAN">[https://arxiv.org/abs/1411.1784 Mirza M. and Osindero S. {{---}} Conditional Generative Adversarial Nets (CGAN) 2014]</ref> вводится техника условно-когнитивной регуляции (англ. ''Conditioning Augmentation''), которая способствует плавности в обусловливающем многообразии. <div class="oo-ui-panelLayout-scrollable" style="display: block; vertical-align:middle; height: auto; width: auto;">[[Файл:StackGAN-1.png|thumb|alt=Архитектура StackGAN|x350px|center|Рисунок 5.<ref name="StackGAN/> Архитектура StackGAN.]]</div> Вклад предлагаемого метода состоит из трех частей:* Предлагается новая составная генеративная состязательная сеть для синтеза фотореалистичных изображений из текстовых описаний. Он разбивает сложную задачу генерации изображений с высоким разрешением на более решаемые подзадачи и значительно улучшает состояние дел. StackGAN впервые генерирует изображения с разрешением 256х256 пикселей с фотореалистичными деталями из текстовых описаний.* Предлагается техника Condition Augmentation для стабилизации обучения CGAN<ref name="CGAN"/>, а также для улучшения разнообразия генерируемых выборок.* Обширные качественные и количественные эксперименты демонстрируют эффективность дизайна модели в целом, а также влияние отдельных компонентов, которые предоставляют полезную информацию для разработки будущих условных моделей GAN.
{| class="wikitable"
| style = "text-align: right" | COCO || style = "text-align: center" | <tex>8.45 \pm 0.03</tex>
|}
 
Вклад предлагаемого метода состоит из трех частей:
* Предлагается новая составная генеративная состязательная сеть для синтеза фотореалистичных изображений из текстовых описаний. Он разбивает сложную задачу генерации изображений с высоким разрешением на более решаемые подзадачи и значительно улучшает состояние дел. StackGAN впервые генерирует изображения с разрешением 256х256 пикселей с фотореалистичными деталями из текстовых описаний.
* Предлагается техника Condition Augmentation для стабилизации обучения CGAN<ref name="CGAN"/>, а также для улучшения разнообразия генерируемых выборок.
* Обширные качественные и количественные эксперименты демонстрируют эффективность дизайна модели в целом, а также влияние отдельных компонентов, которые предоставляют полезную информацию для разработки будущих условных моделей GAN.
 
<div class="oo-ui-panelLayout-scrollable" style="display: block; vertical-align:middle; height: auto; width: auto;">[[Файл:StackGAN-1.png|thumb|alt=Архитектура StackGAN|x350px|center|Рисунок 5.<ref name="StackGAN/> Архитектура StackGAN.]]</div>
Генератор Stage-II проектируется как сеть кодировщик-декодировщик с остаточными блоками. Что касается дискриминатора, его структура аналогична структуре дискриминатора Stage-I только с дополнительными блоками понижающей дискретизации, поскольку на этом этапе размер изображения больше.
Для проверки метода были проведены обширные количественные и качественные оценки. Сравниваются два современных метода Результаты работы модели сравниваются с двумя современными методами синтеза текста в изображение, {{---}} GAN-INT-CLS<ref name="scott">[http://proceedings.mlr.press/v48/reed16.pdf Scott R. {{---}} Generative Adversarial Text to Image Synthesis]</ref> и GAWWN<ref name="scott"/>(рис. 6).
<gallery mode="slideshow" caption="Рисунок 6. Пример результата работы StackGAN.">
Файл:StackGAN-2.png|Сравнение StackGAN<ref name="StackGAN/>.|alt=Сгенерированные изображения птиц
Файл:StackGAN-3.png|Сравнение StackGAN<ref name="StackGAN/>.|alt=Сгенерированные изображения цветов
135
правок

Навигация