Изменения

Перейти к: навигация, поиск

Компьютерное зрение в микроскопии

187 байт добавлено, 22:48, 14 января 2021
Детекция клеток
Во многих биологических экспериментах необходимо уметь детектировать клетки, за которыми ведется наблюдение, понимать сколько их, как они расположены относительно друг друга. Для решения этих задач в компьютерном зрении используется несколько разных подходов. Одни используют сверточные сети, чтобы предсказывать карту плотности, другие основаны на построении деревьев максимально устойчивых экстремальных областей. Вне зависимости от реализации, методы детекции клеток направлены на оценку количетсва клеток и учитывают перекрывания, неравномерность распредления клеток и другие факторы, специфичные для микроскопических изображений.
=== Подсчет клеток на основе сверточных сетей ===
[[Файл:FCRN-A_and_FCRN_B.png|425px|thumb|right|Архитекутры сетей FCRN-A и FCRN-B для построения карт плотности<ref>[https://www.robots.ox.ac.uk/~vgg/publications/2016/Xie16/xie16.pdf Weidi Xie {{---}} Microscopy cell counting and detection with fullyconvolutional regression networks, 2016]</ref>.]]
К автоматическому подсчету клеток можно подойти с разных сторон. Первый подход основан на детекции с предварительной сегментацией изображения. Процесс сегментации сам по себе сложен и существует более эффективный способ. В его основе лежит регрессия и оценка плотности без непосредственной детекции и сегментации. По карте плотности можно с хорошей точностью оценить количество клеток. Рассмотрим, как она строится.
462
правки

Навигация