89
правок
Изменения
→AttnGAN (added ref, changed image size)
=== AttnGAN ===
В качестве решения данной проблемы была предложена<ref name="AttnGan">[https://openaccess.thecvf.com/content_cvpr_2018/papers/Xu_AttnGAN_Fine-Grained_Text_CVPR_2018_paper.pdf Tao X., Pengchuan Z. {{---}} AttnGAN: Fine-Grained Text to Image Generationwith Attentional Generative Adversarial Networks, 2018] </ref> новая '''[[Generative Adversarial Nets (GAN)|генеративно-состязательная нейросеть]] с [[Механизм внимания|вниманием]]''' (англ. ''Attentional Generative Adversarial Network, AttnGAN''), которая относится к вниманию как к фактору обучения, что позволяет выделять слова для генерации фрагментов изображения.
<div class="oo-ui-panelLayout-scrollable" style="display: block; vertical-align:middle; height: auto; max-width: auto854;float: center">[[Файл:AttnGanNetwork.png|thumb|alt=Архитектура AttnGAN|x350px|center|Рисунок 11.<ref name="AttnGan"/> Архитектура AttnGAN.]]</div>
Модель состоит из нескольких взаимодействующих нейросетей (рис. 11):
*Attentional Generative Network {{---}} самая большая сеть, состоящая из трех уровней. Каждый уровень порождает изображения все большего разрешения, от 64x64 до 256x256 пикселей, и результат работы на каждом уровне корректируется с помощью сетей внимания <math>F^{attn}</math>, которые несут в себе информацию о правильном расположении отдельных объектов сцены. Кроме того, результаты на каждом уровне проверяются тремя отдельно работающими дискриминаторами, которые оценивают реалистичность изображения и соответствие его общему представлению о сцене.
Благодаря модификациям нейросеть AttnGAN показывает значительно лучшие результаты, чем традиционные системы GAN. В частности, максимальный из известных показателей Inception Score<ref name="inception">[https://arxiv.org/abs/1801.01973 A Note on the Inception Score]</ref> для существующих нейросетей улучшен на 14,14% (с 3,82 до 4,36) на наборе данных Caltech-UCSD<ref name="caltech"/> и улучшен на целых 170,25% (с 9,58 до 25,89)<ref>[https://paperswithcode.com/sota/text-to-image-generation-on-coco Test results {{---}} Text-to-Image Generation on COCO]</ref> на более сложном наборе данных COCO<ref name="COCO" />.
<gallery mode="slideshow" packed heights=300px caption="Рисунок 12. Пример результата работы AttnGAN.">Файл:Attngan_bird.png|Во второй и третьей строке приведены по 5 наиболее используемых слов сетями внимания <math>F_{1}^{attn}</math> и <math>F_{2}^{attn}</math> соответственно<ref name="AttnGan"/>.|alt=Сгенерированная красная птичка
Файл:Attngan_coco.png|Во второй и третьей строке приведены по 5 наиболее используемых слов сетями внимания <math>F_{1}^{attn}</math> и <math>F_{2}^{attn}</math> соответственно<ref name="AttnGan"/>.|alt=Сгенерированная еда
Файл:Attngan_fruit.png|Во второй и третьей строке приведены по 5 наиболее используемых слов сетями внимания <math>F_{1}^{attn}</math> и <math>F_{2}^{attn}</math> соответственно<ref name="AttnGan"/>.|alt=Сгенерированные фрукты
</gallery>