89
правок
Изменения
м
→Обзор генеративных моделей
=== Obj-GAN ===
'''Объектно-управляемая [[Generative Adversarial Nets (GAN)| генеративная состязательная сеть]] с вниманием''' (англ. ''Object-Driven Attentive Generative Adversarial Network, Obj-GAN'') позволяет создавать изображения по описанию с учётом объектной компоновки. Объектно-управляемый генератор изображений, создаёт изображения на основе двухэтапной генерации. Сначала создаётся макет по наиболее значимым словам в текстовом описании, после этого генерируется изображение с полученной компоновкой объектов. А для сопоставления синтезируемых объектов с текстовым описанием и сгенерированным макетом, предлагается<ref name="Obj-GAN">[https://openaccess.thecvf.com/content_CVPR_2019/papers/Li_Object-Driven_Text-To-Image_Synthesis_via_Adversarial_Training_CVPR_2019_paper.pdf Wendo L., Pengchuan Z. {{---}} Object-driven Text-to-Image Synthesis via Adversarial Training 2019]</ref> новый объектный дискриминатор, базирующийся на Fast R-CNN<ref>[https://arxiv.org/abs/1504.08083 Ross Girshick {{---}} Fast R-CNN, 2015]</ref>. В результате модификаций Obj-GAN значительно превосходит по производительности другие модели на наборе данных [[Известные наборы данных#COCO<ref name="|COCO" />]], увеличивая показатель Inception score<ref name="inception"/> на 11% и уменьшая показатель FID (Fréchet inception distance)<ref>[https://en.wikipedia.org/wiki/Fréchet_inception_distance Fréchet inception distance, FID]</ref> на 27%.
{| class="wikitable" style="float:right; margin-left: 10px;"
|+ '''Inception score в тестовом наборе [[Известные наборы данных#COCO<ref name="MSCOCO" />|COCO]]'''
|-
! Модель !! Inception Score !! FID
|}
<div class="oo-ui-panelLayout-scrollable" style="display: block; vertical-align:middle; height: auto; width: auto;">[[Файл:Obj-GAN.png|thumb|alt=Архитектура Obj-GAN|x300px|thumb|right|Рисунок 23.<ref name="Obj-GAN"/> Архитектура Obj-GAN.]]</div>
Основная цель Obj-GAN {{---}} генерация качественных изображений с семантически значимым макетом и реалистическими объектами. Obj-GAN состоит из пары генератора изображений с вниманием, управляемый объектами, и пообъектного дискриминатора (англ. ''object-wise discriminator''). Генератор изображений в качестве входных данных принимает текстовое описание и предварительно сгенерированный семантический макет (англ. ''semantic layout''), по которым создаёт изображение с помощью многоэтапного процесса coarse-to-fine. На каждом этапе генератор синтезирует фрагмент изображений внутри ограничивающей рамки (англ. ''bounding box''), фокусируясь на наиболее релевантных объекту словах.
Рассмотрим архитектуру Obj-GAN. Первым этапом, генеративная состязательная сеть принимает текстовое предложение и генерирует <b>семантический макет</b> {{---}} последовательность объектов специфицированных соответствующими ограничивающими рамками (наряду с метками классов) и фигурами. <b>Генератор рамок</b> (англ. ''box generator'') и <b>генератор фигур</b> (англ. ''shape generator'') работают соответствующим образом, сначала создавая последовательность ограничивающих рамок, а затем {{---}} фигуру для каждой. Поскольку большинству рамок сопоставлены слова из данного текстового предложения, модель seq2seq с вниманием охватывает это соответствие. Далее конструируется <tex>G_{shape}</tex>, базированный на двунаправленной [[Сверточные нейронные сети | свёрточной]] [[Долгая краткосрочная память|долгой краткосрочной памяти ]] (англ. ''bidirectional convolutional long short-term memory, [[Долгая краткосрочная память | LSTM]]''). Обучение <tex>G_{shape}</tex> основывается на фреймворке генеративной состязательной сети, в которой потеря восприятия используется для ограничения генерируемых фигур и стабилизирования обучения.
<gallery classmode="center" modepacked heights="slideshow" 450px caption="Рисунок 24. Сравнение результатов Obj-GAN с другими генеративными состязательными сетями.">
Файл:Obj-GAN_ex1.png|Сравнение Obj-GAN<ref name="Obj-GAN"/>
Файл:Obj-GAN_ex2.png|Сравнение Obj-GAN<ref name="Obj-GAN"/>
</gallery>
* Модель стохастических генераций макетов сцен с заданным множеством меток, которая будет иметь две компоненты: моделирование распределений подсчитываемых отношений между объектами; моделирование распределений пространственных отношений между объектами.
* Синтетический набор данных, MNIST-макеты, отражающие стохастическую природу генерации макета сцен.
* Экспериментальная валидация моделей с использованием MNIST-макетов и наборов данных [[Известные наборы данных#COCO<ref name="|COCO" />]], в которой содержатся сложные макеты сцен реального мира.
<div class="oo-ui-panelLayout-scrollable" style="display: block; vertical-align:middle; height: auto; width: auto;">[[Файл:LayoutVAE.png|thumb|center|x350px|Рисунок 25.<ref name="LayoutVAE"/> Архитектура LayoutVAE.]]</div>
В статье<ref name="LayoutVAE">[https://openaccess.thecvf.com/content_ICCV_2019/papers/Jyothi_LayoutVAE_Stochastic_Scene_Layout_Generation_From_a_Label_Set_ICCV_2019_paper.pdf LayoutVAE: Stochastic Scene Layout Generation From a Label Set]</ref> были предложены фреймворки и структуры моделей, взаимодействующие с LayoutVE, такие как: <b>PNP-Net</b> {{---}} фреймворк вариационного автокодировщика для генерации изображения абстрактной сцены из текстовой программы, полностью описывающей её (помимо того, что это {{---}} стохастическая модель для генерации, она была протестирована на синтетических наборах данных с малым числом классов); <b>LayoutGAN</b> {{---}} модель, основанная на [[Generative Adversarial Nets (GAN) | генеративных состязательных сетях]], генерирующая макеты графических элементов (прямоугольники, треугольники, и так далее); VAE-базированный фреймворк, кодирующий объект и информацию о макете 3D-сцен в помещении в скрытом коде; и так далее...
TextKD-GAN представляет из себя решение для основного узкого места использования генеративных состязательных сетей для генерации текста с дистилляцией знаний: метод, переносящий знания смягченного вывода модели преподавателя в модель студента. Решение основано на AE (учителе), чтобы получить гладкое представление реального текста. Это гладкое представление подается в дискриминатор TextKD-GAN вместо обычного однократного представления. Генератор (студент) пытается изучить многообразие смягченного гладкого представления AE. TextKD-GAN, в конечном итоге, будет превосходить обычный генератор текста на основе GAN, который не нуждается в предварительной подготовке.
<div class="oo-ui-panelLayout-scrollable" style="display: block; vertical-align:middle; height: auto; width: auto;">[[Файл:TextKD-GAN_Model.png|thumb|right|x400px|Рисунок 27.<ref name="TextKD-GAN"/> Модель TextKD-GAN для генерации текста.]]</div>
В общепринятом текстовом подходе к распознавании, реальные и сгенерированные входные данные дискриминатора будут иметь разные типы ([https://en.wikipedia.org/wiki/One-hot one-hot] и [https://en.wikipedia.org/wiki/Softmax_function softmax]), и он может обыкновенно отличить их друг от друга. Один из способов избежать этой проблемы состоит в получении непрерывно гладкого представление слов, а не one-hot представления, и обучении дискриминатора различать их. Здесь используется общепринятый атокодировщик (учитель), чтобы заменить one-hot представление выходом, перестроенным softmax-функцией, который является представлением, дающим меньшую дисперсию градиентов. Предложенная модель изображена на рисунке 27. Как видно, вместо one-hot представления реальных слов смягченный реконструированный выход автокодировщика подается на вход дискриминатору. Эта техника значительно усложняет распознавание для самого дискриминатора. Генератор GAN с softmax выходом пытается имитировать распределение выходного сигнала автокодировщика вместо общепринятого one-hot представления.
Обширные эксперименты на наборах данных Dayton, CVUSA<ref>[http://mvrl.cs.uky.edu/datasets/cvusa/ Crossview USA (CVUSA)]</ref> и Ego2Top<ref>[https://www.crcv.ucf.edu/projects/ego2top/index.php Ego2Top: Matching Viewers in Egocentric and Top-view Videos (ECCV 2016)]</ref> показывают, что данная модель способна генерировать значительно более качественные результаты, чем другие современные методы.
<div class="oo-ui-panelLayout-scrollable" style="display: block; vertical-align:middle; height: auto; width: auto;">[[Файл:MCA-GAD.png|thumb|left|x300px|Рисунок 29.<ref name="MCA-GAN"/> Архитектура MCA-GAD.]]</div>
На рисунке 29 проиллюстрирована структура сети. Первый этап, как было описано выше, состоит из каскадной семантически-управляемой генерацинной подсети, использующая изображения с одном представлении и условные семантические отображения в другом представлении в качестве входных данных и реконструирующая эти изображения в другом представлении. Результирующие изображения далее подаются на вход семантическому генератору для восстановления исходного семантического отображения, формируя цикл генерации. Второй этап заключается в том, что грубый синтез (англ. ''coarse synthesis'') и глубокие характеристики объединяются и передаются в модуль мультиканального выделения внимания, направленный на получение более детализированного синтеза (англ. ''fine-grained synthesis'') из большего пространства генерации и создание отображений неопределенности (англ. ''uncertainty maps'') для управления множественными потерями оптимизации (англ. ''optimization losses'').
Поскольку между изначальной перспективой и результирующей существует объемная деформация объекта и/или сцены, одномасштабная характеристика (англ. ''single-scale feature'') вряд ли сможет захватить всю необходимую информацию о пространстве для детализированной генерации. Многомасштабный пространственный пулинг оперирует же другими значениями размера ядра и шага для выполнения глобального среднего пулинга (англ. ''global average pooling'') на одних и тех же входных характеристиках, тем самым получая многомасштабные характеристики с отличающимися рецептивными полями (англ. ''receptive fields'') для восприятия различных пространственных контекстов. Механизм мультиканального внимания позволяет осуществлять выполнение пространственного и временного отбора (англ. ''spatial and temporal selection''), чтобы синтезировать конечный детализированный результат.
<div class="oo-ui-panelLayout-scrollable" style="display: block; vertical-align:middle; height: auto; width: auto;">[[Файл:MCA-GAN_Module.png|thumb|center|x400px|Рисунок 30.<ref name="MCA-GAN"/> Архитектура модуля мультиканального выделения внимания (англ. ''multi-channel attention selection module'').]]</div>
<div class="oo-ui-panelLayout-scrollable" style="display: block; vertical-align:middle; height: auto; width: auto;">[[Файл:MCA-GAN_CrossviewImageTranslation.png|thumb|center|x500px|Рисунок 31.<ref name="MCA-GAN"/> Преобразование изображения перекрестным видом.]]</div>
== Области применения ==