91
правка
Изменения
м
[[Файл:TextSharpener-Identity.png|200px|thumb|right|Рис 1. Пример работы TextSharpener. Слева — размытое изображение, посередине — исходное, справа — результат работы алгоритма.]]
[[Файл:Jefferson_Graham_on_Manhattan_Beach_Pier.jpeg|200px|thumb|left|Изображение 2. Фотография, сделанная широкоугольной камерой]]
[[Файл:SynthText-in-the-Wild.png|200px|thumb|right|Рис. 3. Пример изображения из набора SynthText in the Wild]]
Нет описания правки
В обучении компания использует два режима — симуляция после восприятия (англ. ''postperception simulation'') и сквозная симуляция (англ. ''end-to-end simulation''). В режиме симуляции объектов из сгенерированных миров обучаемому алгоритму передаётся список объектов и их подробное описание, в свою очередь алгоритм должен выбрать дальнейшие действия автомобиля. В режиме симуляции мира на вход алгоритму подаются показания датчиков из сгенерированного мира, и алгоритм должен также распознать с помощью этих показаний присутствующие вокруг объекты и их характеристики. Этот режим полезен тем, что он более похож на реальный мир и учитывает помехи, возникающие на сенсорах.
[[Файл:TextSharpener-Identity.png|200px|thumb|right|Рис 1. Пример работы TextSharpener. Слева — размытое изображение, посередине — исходное, справа — результат работы алгоритма.]]
=== TextSharpener ===
Одно из самых наглядных применений аугментации данных — алгоритмы восстановления изображений. Для работы таких алгоритмов исходный набор изображений расширяется их копиями, к которым применяются некие преобразования из фиксированного набора. На основе полученных изображений генерируется датасет, в котором входными данными считаются полученные изображения, а целевыми — исходные.
Один из известных алгоритмов такого рода — TextSharpener<ref name="TextSharpener">Unblurring images of text with convolutional neural networks — https://gardarandri.github.io/TextSharpener/ — Retrieved January 8, 2021</ref>. Этот алгоритм, разработанный в Университете Исландии и основанный на [[Сверточные нейронные сети|свёрточной нейронной сети]], позволяет убирать размытие текста на изображениях (см. изображение 1).
[[Файл:Jefferson_Graham_on_Manhattan_Beach_Pier.jpeg|200px|thumb|left|Изображение 2. Фотография, сделанная широкоугольной камерой]]
=== OmniSCV ===
Нередко различные устройства оснащаются широкоугольными и панорамными камерами с углом обзора до 360°. Изображения, получаемые с таких камер, обладают довольно сильными искажениями (см. изображение 2).
Набор данных VC-Clothes<ref name="VC-Clothes">VC-Clothes — https://wanfb.github.io/dataset.html — Retrieved January 11, 2020</ref> создан для разработки алгоритмов '''реидентификации''' — определения, действительно ли на двух изображениях один и тот же человек. Эти алгоритмы могут использоваться для нахождения людей на записях с камер, на пограничных пунктах и так далее. VC-Clothes представляет из себя сгенерированные изображения одинаковых людей в разной одежде и на разном фоне. Помимо реидентификации, этот датасет также может быть использован для решения задачи семантической [[Сегментация изображений|сегментации]], для отделения пикселей, соответствующих одежде, от пикселей, соответствующих лицу персонажа.
[[Файл:SynthText-in-the-Wild.png|200px|thumb|right|Рис. 3. Пример изображения из набора SynthText in the Wild]]
=== SynthText in the Wild ===
Набор данных SynthText in the Wild<ref name="SynthText">Visual Geometry Group - University of Oxford — https://www.robots.ox.ac.uk/~vgg/data/scenetext/ — Retrieved January 19, 2020</ref> разработан для обучения алгоритмов [[Распознавание текста на изображении|распознавания текста на изображении]]. Он берёт обычные изображения и накладывает на них текст из определённого набора (рис. 3). Набор сопровождается подробной аннотацией: для каждого изображения указаны используемые фразы, а также координаты каждого слова и символа на изображении.