Автоматический синтез Автоматическое создание реалистичных высококачественных изображений из текстовых описаний был бы интересен и довольно полезен, так как имеет множество практических применений, но современные системы искусственного интеллекта все еще далеки от этой цели, так как это является довольно сложной задачей в области компьютерного зрения. Однако в последние годы были разработаны универсальные и мощные рекуррентные архитектуры нейронных сетей для изучения различных представлений текстовых признаков. Между тем, глубокие сверточные [[Generative Adversarial Nets (GAN)| генеративные состязательные сети]] (англ. ''Generative Adversarial Nets, GANs'') начали генерировать весьма убедительные изображения определенных категорий, таких как лица, обложки альбомов и интерьеры комнат. Образцы, генерируемые существующими подходами "текст-изображение", могут приблизительно отражать смысл данных описаний, но они не содержат необходимых деталей и ярких частей объекта. Мы рассмотрим глубокую архитектуру В данной статье рассмотрены формулировка и формулировку глубокая архитектура GAN, объединим а также объединены достижения в моделировании текста и генерации изображений, переводя визуальные концепции из символов в пикселипо тексту.