Изменения

Перейти к: навигация, поиск
м
Обучение с частичным привлечением учителя для автоматического распознавания речи
==Обучение с частичным привлечением учителя для автоматического распознавания речи==
[[Файл:ASR_new_sota.png|600px|thumb|right|'''Рисунок 1.''' $WER$ SOTA алгоритмов на датасетах LibriSpeech test-clean/test-other. $WER$ описываемого в статье алгоритма отмечен красной точкой. [https://arxiv.org/pdf/2010.10504.pdf Источник]]]
Для обучения современных систем распознавания речи требуются тысячи часов размеченной речи, однако получение размеченных данных в необходимом объеме (особенно с учетом разнообразия существующих языков) затруднительно. Это повлияло на то, что сейчас в машинном обучении для распознавания речи успешно используется [[Обучение с частичным привлечением учителя| обучение с частичным привлечением учителя]], которое позволяет сначала обучать модель на большом объеме неразмеченных данных, а потом корректировать ее при помощи размеченных.
Одним из примеров обучения с частичным привлечением учителя для автоматического распознавания речи является подход, впервые представленный в статье<ref>''Yu Zhang, James Qin, Daniel S. Park, Wei Han, Chung-Cheng Chiu, Ruoming Pang, Quoc V. Le, Yonghui Wu'' Pushing the Limits of Semi-Supervised Learning for Automatic Speech Recognition[https://arxiv.org/pdf/2010.10504.pdf]</ref>, основанный на комбинации алгоритмов [[Распознавание_речи#Noisy_student | noisy student]], [[Распознавание_речи#wav2vec | wav2vec]] и использовании модели [[Распознавание_речи#Конформер| Конформера]]. Такой метод позволил уменьшить $WER$ на наборах данных LibriSpeech test-clean/test-other с $1.7\%/3.3\%$ (предыдущий ''state-of-the-art'') до $1.4\%/2.6\%$(Рисунок 1). <br>
Основная идея состоит в том, что множество моделей Конформеров при помощи алгоритма ''wav2vec'' предварительно обучается на неразмеченных данных, при этом одновременно с этим на основе них генерируются размеченные. Таким образом, неразмеченные данные используются для двух целей: для обучения модели и для генерации размеченных данных, которые используются для дальнейшего обучения модели алгоритмом ''noisy student''.
===Конформер===
[[Файл:Conformer.png|600px|thumb|right|'''Рисунок 12.''' Общая схема Конформера (a) и схема блоков Конформера (b)]][[Трансформер|Трансформер]]<sup>[на 21.01.21 не создан]</sup>, использующий [[Механизм внимания#Self-Attention|механизм самовнимания]], хорошо захватывает глобальный контекст, однако не очень хорошо извлекает локальные признаки. [[Сверточные нейронные сети]], наоборот, эффективно используют локальные признаки, но требуют большого числа слоев для захвата глобального контекста. Конформер (англ. ''Conformer'') комбинирует сверточные слои с механизмом самовнимания. $WER$ на LibriSpeech test-clean/test-other составляет $1.9\%/3.9\%$.
Конформер сначала обрабатывает входные данные с помощью сверточной нейронной сети, состоящей из слоя [[Сверточные нейронные сети#Пулинговый слой|пулинга]], [[Нейронные сети, перцептрон|полносвязного слоя]] и [[Практики реализации нейронных сетей#Дропаут|дропаута]], а затем с помощью последовательности блоков Конформера.
Блоки Конформера {{---}} это последовательность из двух модулей прямой связи (англ. ''feed forward''), между которыми расположены модуль многоголового самовнимания (англ. ''Multi-Head Self Attention'') и сверточный модуль, с последующей нормализацией слоя (англ. ''layer normalization'').
[[Файл:Multi_Head_Self_Attention_module.png|400px|thumb|right|'''Рисунок 23.''' Модуль многоголового самовнимания]]
'''Модуль многоголового самовнимания'''
'''Сверточный модуль'''
[[Файл:Convolution_module.png|600px|thumb|right|'''Рисунок 34.''' Сверточный модуль]]
Последовательность слоев в сверточном модуле начинается с управляемого модуля<ref>''N. Dauphin, Angela Fan, Michael Auli, David Grangier'' Language Modeling with Gated Convolutional Networks[https://arxiv.org/pdf/1612.08083.pdf]</ref>: сверточного слоя с ядром $1 \times 1$ (англ. ''pointwise convolution'') и управляемого линейного блока (англ. ''gated linear unit''). Использование управляемого линейного блока уменьшает [[Сверточные нейронные сети#Residual block|проблему исчезающего градиента]]. После сверточного слоя используется [[Batch-normalization|пакетная нормализация]].
'''Модули прямой связи'''
[[Файл:FFN.png|600px|thumb|right|'''Рисунок 45.''' Схема модуля прямой связи]]
В отличие от Трансформера, в котором единственный модуль прямой связи следует за модулем внимания и состоит из двух линейных преобразований и нелинейной активации между ними, Конформер представляет собой два модуля прямой связи, состоящих из слоя нормализации и двух линейных слоев. Кроме того, для регуляризации используется функция активации ''swish'' и [[Практики реализации нейронных сетей#Дропаут|дропаут]].
{|align="center"
|-valign="top"
|[[Файл:wav2vec.png | 600px | thumb | '''Рисунок 56.''' Схема обучения модели wav2vec]]
|}
89
правок

Навигация