Изменения
→Построение с помощью свёрточных нейронных сетей
* '''Ищем реальную карту глубины для обучения''': с помощью карты смещений, можем построить карту глубины <math>y</math> вышеописанным способом. Также допустимы другие способы построения карты глубины для обучения нейронной сети.
* '''Функция потерь''': определим [[Функция потерь и эмпирический риск|функцию потерь]], для предсказанной карты <math>\hat y</math>, <math>d_i = log( y_i) - log (\hat y_i)</math>, <math>\lambda \in [0, 1]</math> и <math>n </math> — количество пикселей.<math>L(y, \hat y) = \frac{1}{n} \sum\limits_{i} d^2_i - \frac{\lambda}{n^2}(\sum\limits_{i} d_i)^2</math>, где <math>y_i</math> и <math>\hat y_i</math> это i пискель для для реальной карты глубин и для предсказанной карты, соответственно. Гиперпараметр <math>\lambda</math>, нужен для того, чтобы функция потерь меньше росла при большом количестве пикселей, предсказание для которых достаточно близко к реальному. Например, если <math>\lambda = 0</math>, то мы просто придём к оптимизации в L2 для <math>d_i</math>, т.е. <math>L(y, \hat y) = \frac{1}{n} \sum\limits_{i} d^2_i </math>.<ref name="loss">David Eigen, Christian Puhrsch, Rob Fergus "Depth Map Prediction from a Single Imageusing a Multi-Scale Deep Network" стр. 5</ref>
* '''Обучение свёрточной нейронной сети''': далее идёт обычное обучение нейронной сети по карте различий путем обратного распространения ошибки, оптимизируя заданную выше функцию потерь.