Изменения

Перейти к: навигация, поиск

Компьютерное зрение в микроскопии

36 байт добавлено, 19:26, 22 января 2021
Задачи компьютерного зрения в микроскопии
== Классификация клеток ==
[[Файл:Dividing Cell Fluorescence-ru.jpg|left|300px|thumb|Рисунок 1. Пример клетки с различными флуоресцентными маркерами<ref>[https://ru.wikipedia.org/wiki/%D0%A4%D0%BB%D1%83%D0%BE%D1%80%D0%B5%D1%81%D1%86%D0%B5%D0%BD%D1%86%D0%B8%D1%8F_%D0%B2_%D0%B1%D0%B8%D0%BE%D0%BB%D0%BE%D0%B3%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D1%85_%D0%B8%D1%81%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D1%8F%D1%85 Википедия: Флуоресценция в биологических исследованиях]</ref>.]]
Классификация клеток является базовой задачей микроскопии. Обычно для этого используются изображения, полученные на флуоресцентных микроскопах, так как классификаторы для изображений с обычных оптических микроскопов не способны отразить биологическое разнообразие различных типов клеток. Клетки можно делить по фазе в клеточном цикле, типу (повержденные или нет, раковые или нормальные), физиологическому состоянию, виду и другим признакам. Для большинства задач классификации уже существуют готовые архитектуры сверточных сетей<ref>[https://uu.diva-portal.org/smash/get/diva2:1334417/FULLTEXT01.pdf Håkan Öhrn {{---}} General image classifier for fluorescence microscopy using transfer learning , 2019]</ref><ref name="phase">[https://www.nature.com/articles/s41467-017-00623-3#supplementary-information Philipp Eulenberg {{---}} Reconstructing cell cycle and disease progression using deep learning, 2017]</ref><ref name="cancer">[https://pubmed.ncbi.nlm.nih.gov/30865716/ Ronald Wihal Oei {{---}} Convolutional neural network for cell classification using microscope images of intracellular actin networks, 2019]</ref><ref name="blood">[https://www.nature.com/articles/s41598-020-59215-9 Ahmed T. Sahlol {{---}} Efficient Classification of White Blood Cell Leukemia with Improved Swarm Optimization of Deep Features, 2020]</ref><ref>[https://www.biorxiv.org/content/10.1101/817544v1.full Samuel Berryman {{---}} Image-based Cell Phenotyping Using Deep Learning, 2019]</ref><ref>[http://www.mva-org.jp/Proceedings/2017USB/papers/06-01.pdf Nan Meng {{---}} Computational single-cell classification using deep learning on bright-field and phase images, 2017]</ref><ref>[https://arxiv.org/pdf/1806.01313.pdf Sachin Mehta {{---}} Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images, 2018]</ref>.
=== Определение фазы клеточного цикла ===
Одним из признаков, по которым можно разделить клетки, является определение фазы клеточного цикла, в которой находится клетка. Эта задача имеет практическое применение для обнаружения поврежденных клеток, которые при визуализации будут кластеризоваться отдельно от остальных. Сверточная сеть для решения задачи изображена на рисунке 2. Она обучается на изображениях с флуоресцентными метками, о которых было сказано ранее, и дает на выходе не только классификацию каждой клетки, а также визуализирует процесс клеточного цикла, используя нелинейное уменьшение размерности<ref name="phase"/>. Классификация и визуализация являются всего лишь различными способами интерпретации результатов, поэтому строятся на основе одних и тех же выведенных закономерностей.
=== Классификация лейкоцитов ===
[[Файл:Vggnet sessa.jpg|left|400px|thumb|Рисунок 4. Блок-схема подхода к классификации лейкоцитов<ref>[https:name="blood"//www.nature.com/articles/s41598-020-59215-9 Ahmed T. Sahlol {{---}} Efficient Classification of White Blood Cell Leukemia with Improved Swarm Optimization of Deep Features, 2020]</ref>.]]
Эта задача отличается от предыдущих тем, что не требует предварительной обработки материалов и использования флуоресцентного микроскопа, для ее решения достаточно изображений с оптического микроскопа. Лейкоциты важно уметь классифицировать, потому что они играют значительную роль в организме человека (иногда в крови могут образоваться злокачественные лейкоциты, которые способны вызывать лейкемию). Автоматическая классификация лейкоцитов может помочь специалистам в лабораториях, где нет достаточного количества квалифицированных сотрудников для проведения анализа крови.
462
правки

Навигация