Изменения

Перейти к: навигация, поиск

Определение положения человека

27 байт добавлено, 16:10, 23 января 2021
DeepCut (2016)
Авторы предлагают разделение и разметку набора гипотез о частях тела, созданных с помощью детекторов частей на основе [[сверточные нейронные сети|CNN]]. Неявно выполняется не-максимальное подавление (англ. ''Non-maximum Suppression'', '''NMS'''<ref name="NMS">[https://towardsdatascience.com/non-maximum-suppression-nms-93ce178e177c Non-maximum Suppression, Sambasivarao. K, 2019]</ref>) для набора возможных частей и производится группировка, чтобы сформировать конфигурации частей тела с учетом геометрических ограничений и ограничений внешнего вида.
Пример работы алгоритма, рисунок представлен на рисунке 9: (a) начальное определение возможных частей и попарных связей между всеми обнаруженными частями, которые (b) кластеризуются по принадлежности одному человеку (один цвет {{---}} один человек) и каждая часть помечается меткой соответствующего этой части класса (разные цвета и символы относятся к разным частям тела); (c) демонстрация результата.
Для оценки эффективности решения проводилось сравнение нескольких вариантов архитектуры, использующих DeepCut друг с другом и с тремя другими решениями. Использовались наборы данных LSP (Leeds Sport Poses)<ref name="LSP">[https://sam.johnson.io/research/lsp.html LSP dataset]</ref>, LSPET (LSP Extended)<ref name="LSPET">[https://dbcollection.readthedocs.io/en/latest/datasets/leeds_sports_pose_extended.html LSPET dataset]</ref> и MPII Human Pose<ref name="MPII">[http://human-pose.mpi-inf.mpg.de/ MPII Human Pose]</ref>. Были рассмотрены два варианта архитектуры, использующие DeepCut SP (Single Person) и DeepCut MP (Multi Person), совмещающие в себе DeepCut и адаптированная быстрая [[сверточные нейронные сети|сверточная нейронная сеть]] на основе регионов (англ. ''Adapted Fast R-CNN''<ref name="FastR-CNN">[https://arxiv.org/abs/1504.08083 Fast R-CNN, Ross Girshick, 2015]</ref>, '''''AFR-CNN''''') в одном случае и DeepCut и плотные [[сверточные нейронные сети]] (англ. ''Dense-CNN'') в другом. Также в сравнении участвовали решения Tompson et al.<ref name="Tompson">[J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint training of a convolutional network and a graphical model for human pose estimation. In NIPS’14]</ref>, Chen&Yuille<ref name="Chen&Yuille">[X. Chen and A. Yuille. Articulated pose estimation by a graphical model with image dependent pairwise relations. In NIPS’14]</ref>, Fan et al.<ref name="Fan">[X. Fan, K. Zheng, Y. Lin, and S. Wang. Combining local appearance and holistic view: Dual-source deep neural networks for human pose estimation. In CVPR’15]</ref>.
125
правок

Навигация