1632
правки
Изменения
м
rollbackEdits.php mass rollback
Наличие в наборах данных большого количества объектов одного типа, но различных подтипов позволяет применить машинное обучение для решения задачи классификации на этих объектах.
==== Морфологическая классификация галактик ====
[[Файл:hubbleTuningFork.jpg|300px|thumb|right|''Рис. 1.'' Классификация галактик, [https://ru.wikipedia.org/wiki/Последовательность_Хаббла последовательность Хаббла]]]Одной из самых популярных тем классификации является морфологическая классификация галактик (англ. ''Morphology galaxy classification''), позволяющая разделить их на различные типы по визуальным признакам (''Рис. 1''). Для обучения моделей, призванных решать эту задачу, часто используют набор данных [https://data.galaxyzoo.org/ Galaxy Zoo], который является результатом волонтерского сотрудничества (ручной классификации галактик). Существует множество работ на эту тематику, использующих различные алгоритмы машинного обучения, как то: [[ Дерево решений и случайный лес | случайные леса]]<ref>Baron, D., & Poznanski, D. 2017, MNRAS, 465,4530</ref>, [[ Метод_опорных_векторов_(SVM) | метод опорных векторов]]<ref> Huertas-Company, M., Rouan, D., Tasca, L.,Soucail, G., & Le F`evre, O. 2008, A&A, 478,971 </ref>, [[ Нейронные сети, перцептрон | нейронные сети]]<ref> Banerji, M., Lahav, O., Lintott, C. J., et al. 2010,MNRAS, 406, 342 </ref>. Применение подходов машинного обучения в этом случае довольно прямолинейно, а разница между работами состоит в основном в представлении данных, выборе гиперпараметров и признаков классификации. Дополнительной сложностью вышеприведённых и прочих работ на ту же тему являются визуальные ограничения имеющихся изображений, такие, как мерцание, смещение, размытие и [https://ru.wikipedia.org/wiki/Красное_смещение красное смещение]. В настоящее время существуют методы, обеспечивающие вероятность неверной классификации объекта в задаче морфологической классификации галактик в <tex>0.005</tex><ref>Miller, A. A., Kulkarni, M. K., Cao, Y., et al.2017, AJ, 153, 73</ref>.
Этой задачей следует заниматься, так как возможность находить тип галактик необходима для изучения их эволюции, а также является необходимым умением для множества задач наблюдательной космологии (англ. ''Observational cosmology''), например, для нахождения [https://ru.wikipedia.org/wiki/Кривая_блеска кривых блеска].
====Классификация звезд и галактик====
[[Файл:Unsupervised galaxy star classification.png|300px|thumb|right|''Рис. 2.'' Распределение звезд, галактик и квазаров согласно меткам спектрометрических классов<ref> C. H. A. Logan and S. Fotopoulou A&A, 633 (2020) A154 </ref>]]
Классификация звезд и галактик (англ. ''Star Galaxy Classification'') является базовым шагом любой классификации на звездах или галактиках, соответственно, имеет большое практическое значение. Существует много работ на эту тему, связанных с машинным обучением, использующих различные алгоритмы: случайный лес<ref>Miller, A. A., Kulkarni, M. K., Cao, Y., et al.2017, AJ, 153, 73</ref>, метод опорных векторов<ref>Kov ́acs, A., & Szapudi, I. 2015, MNRAS, 448,1305</ref>, нейронные сети<ref>Noble Kennamer, David Kirkby, Alexander Ihler, Francisco Javier Sanchez-Lopez ; Proceedings of the 35th International Conference on Machine Learning, PMLR 80:2582-2590, 2018.
</ref>, алгоритмы кластеризации<ref>C. H. A. Logan and S. Fotopoulou
A&A, 633 (2020) A154</ref>(пример распределения можно наблюдать на Рис. 2).
Главная проблема классификации звезд и галактик состоит в том, что, по мере удаления объекта от телескопа различные атмосферные или космогенные эффекты могут повлиять на свет, который отражается от тела и захватывается телескопом. Детерминированные алгоритмы классификации обычно проверяют звездную величину объекта на соответствие известным шаблонам звезд и галактик и работают только с объектом как таковым. В то же время кажется логичным, что результат классификации объекта может зависеть не только от того, как он выглядит на изображении, но и от того, как выглядит на изображении участок неба, в котором он находится (потому что на этот участок, скорее всего, влияют такие же эффекты искажения изображения). Алгоритмы машинного обучения, натренированные на изображениях, способны учесть эти зависимости.
=== Изучение астрономических параметров ===
==== Красное смещение ====
[[Файл:DistanceByRedshift.png|300px|thumb|right|''Рис. 3.'' Зависимость расстояния от красного смещения]][https://ru.wikipedia.org/wiki/Красное_смещение Красное смещение] (англ. ''redshift'') {{---}} астрономическое явление изменения длины волны наблюдаемого объекта. Важным свойством величины красного смещения является то, что через него, пользуясь законом Хаббла, можно высчитать примерное расстояние до объекта(Рис. 3). Соответственно, красное смещение является важным астрономическим параметром, и при исследовании некоторых объектов будет полезным знать эту величину для вычисления других признаков объекта или заключения выводов о каких-либо закономерностях в наличествующих данных.
Красное смещение может быть вычислено при помощи спектральных данных объекта (англ. ''spectroscopic redshift''), однако существуют другие методики, позволяющие в некоторых случаях определить примерную величину смещения по фотографии, пользуясь цветовыми характеристиками и яркостью объекта (англ. ''photometric redshift''). Задачу нахождения величины фотометрического красного смещения можно переформулировать как задачу регрессии на соответствующих данных. Для решения такой задачи на популярных астрономических данных может быть использовано множество известных моделей машинного обучения, к примеру, случайные леса<ref> Carliles, S., Budav ́ari, T., Heinis, S., Priebe, C., &Szalay, A. S. 2010, ApJ, 712, 511 </ref>, нейронные сети<ref> Vanzella, E., Cristiani, S., Fontana, A., et al.2004, A&A, 423, 761 </ref> и идеи [[Виды ансамблей#Бэггинг | композиции нескольких моделей]]<ref>A. D’Isanto and K. L. Polsterer, A&A, 609 (2018) A111</ref>. В настоящее время существуют алгоритмы, основанные на [[Сверточные нейронные сети | сверточных нейронных сетях]], по предсказаниям которых можно восстановить расстояния до галактик, отличающихся от расстояний, вычисленных при помощи значений спектроскопического красного смещения, на несколько мегапарсек<ref>M. Shuntov, J. Pasquet, S. Arnouts, O. Ilbert, M. Treyer, E. Bertin, S. de la Torre, Y. Dubois, D. Fouchez, K. Kraljic, C. Laigle, C. Pichon and D. Vibert,
==== Кривые блеска ====
[https://ru.wikipedia.org/wiki/Кривая_блеска Кривая блеска] (англ. ''light curve'') {{---}} функция изменения звездной величины (в базовом понимании яркости) во времени(Рис. 4). Кривая блеска позволяет определить целый ряд физических свойств тела, в частности, период обращения, продолжительность затмения, отношение радиуса звезды к радиусу орбиты тела. Соответственно, разделение кривых блеска на типы позволяет лучше изучить структуры астрономических систем.
Классифицировать кривые блеска можно при помощи [[Сверточные нейронные сети | сверточных нейронных сетей]]<ref>Mahabal, A., Sheth, K., Gieseke, F., et al. 2017,ArXiv e-prints, arXiv:1709.06257</ref>. Для этого необходимо представить функцию блеска в виде объекта, на котором можно обучать алгоритм, к примеру, в виде изображения. Это преобразование проводится следующим образом:
# Для каждых двух точек кривой блеска <tex>(t_1, m_1), (t_2, m_2)</tex>, где <tex>t_i</tex> {{---}} момент времени, <tex>m_i</tex> {{---}} значение звездной величины, <tex>t_2 - t_1 = k * T</tex>, где <tex>k \in \mathbb{N}</tex>, <tex>T</tex> {{---}} некий временной интервал, пара значений <tex>(t_2 - t_1, m_2 - m_1)</tex> помещается в массив(Рис. 5).
# Полученные величины <tex>(\Delta t, \Delta m)</tex> округляются до ближайших из значений <tex>\delta m=\pm[0,0.1,0.2,0.3,0.5,1,1.5,2,2.5,3,5,8]</tex>,<br><tex>\delta t=[\frac{1}{145},\frac{2}{145},\frac{3}{145},\frac{4}{145},\frac{1}{25},\frac{2}{25},\frac{3}{25},1.5,2.5,3.5,4.5,5.5,7,10,20,30,60,90,120,240,600,960,2000,4000]</tex>, тем самым перемещаясь в пространство <tex>23 * 24</tex>.
# Строится изображение размера <tex>23 * 24</tex>, где интенсивность каждого пикселя пропорциональна количеству соответствующего элемента <tex>(\Delta t, \Delta m)</tex> в полученном выше массиве(Рис. 6).
После этого на полученных изображениях обучается сверточная нейронная сеть, которая может классифицировать тип кривой блеска с точностью 84.5%.
[[Файл:PenelopeLightCurve.png|300px|thumb|left|''Рис. 4.'' Кривая блеска астероида Пенелопа]][[Файл:LightCurveImage.png|300px|thumb|right|''Рис. 6.'' Изображения для обучения сверточной нейронной сети]][[Файл:DmDtCurveMapping.png|300px|thumb|center|''Рис. 5.'' Преобразование кривой блеска в множество точек на плоскости]]
=== Изучение астрономических явлений===
Для классификации астрономических явлений необходимо иметь данные о каком-то участке неба на протяжении какого-то времени. Существуют два подхода, связанные с обработкой последовательностей изображений неба, связанные с машинным обучением:
* Закодировать изменения во времени при помощи признаков искусственного объекта, после чего можно обучить классификатор на таких объектах, и результаты получать путем кодирования данных в объекты такого же типа. Классификатор может быть любым, к примеру, можно использовать случайный лес<ref>Bloom, J. S., Richards, J. W., Nugent, P. E., et al.2012, PASP, 124, 1175</ref>.
* Использовать алгоритмы, способные обрабатывать последовательности объектов, например, [[ Рекуррентные нейронные сети | рекуррентные нейронные сети]], или, в частности, [[ Долгая краткосрочная память | LSTM]]<ref>Sadeh, I., ArXiv e-prints, arXiv:1902.03620</ref>(Рис. 7), которые можно обучить на нескольких последовательных результатах измерения излучения участка неба. В вышеупомянутой работе, к примеру, объектами являются данные о гамма-излучении на протяжении 20 временных интервалов.[[Файл:LSTMforTransients.png|600px|thumb|center|''Рис. 7.'' Архитектура рекуррентной нейронной сети для классификации кратковременных событий]]
====Астрономические феномены====
====Классификация гамма-всплесков====
[[Файл:grb.jpg|300px|thumb|right|''Рис. 8.'' Художественное изображение гамма-всплеска]][https://ru.wikipedia.org/wiki/Гамма-всплеск Гамма-всплески] (англ. ''gamma ray bursts'') (Рис. 8) {{---}} масштабные космические выбросы энергии взрывного характера. На сегодняшний день различают два основных подвида гамма-всплесков: длинные и короткие, имеющие существенные различия в спектрах и наблюдательных проявлениях. Однако, многие авторы указывают на наличие третьего их типа с длиной события между длинными и короткими.
Для проверки гипотезы о существовании гамма-всплесков можно использовать алгоритмы [[ Кластеризация | кластеризации]]. Достаточно зафиксировать модель, [[Оценка качества в задаче кластеризации | метрику]] и функцию ошибки, и можно будет оценить правдоподобность наличия третьего типа всплесков в каком-либо наборе данных. Было установлено<ref>Kulkarni, S., Desai, S., Astrophys Space Sci 362, 70 (2017)</ref>, что на данных [https://swift.gsfc.nasa.gov/ SWIFT] допущение наличия третьего типа гамма-всплесков уменьшает ошибку в <tex>2.5</tex> раза.