Изменения
Нет описания правки
# Последовательность $a_0, a_1, a_2, \ldots, a_k, \ldots$ имеет производящую функцию $A(t)=a_0 + a_1t + a_2t^2 + \ldots$. Найдите производящую функцию последовательности $a_0, 0, a_1, 0, a_2, 0, a_3 \ldots$
# Последовательность $a_0, a_1, a_2, \ldots, a_k, \ldots$ имеет производящую функцию $A(t) = a_0 + a_1t + a_2t^2 + \ldots$. Найдите производящую функцию последовательности $a_0, a_2, a_4, a_6, \ldots$
# Производящая функция называется рациональной, если она представима в виде отношения двух многочленов. Для производящих функций каждой из следующих последовательностей выясните, является ли она рациональной, если да, приведите ее представление в таком виде. Восстановите рекуррентное соотношение для этих последовательностей. Последовательность $1, -2, 3, -4, 5, \ldots$.
# Последовательность $0, 1, 8, 27, 64, 125, \ldots, k^3,\ldots$
# Последовательность $1\cdot 2^0, 2\cdot 2^1, 3\cdot 2^2, \ldots (n + 1)\cdot 2^n, \ldots$
# Последовательность $1+1, 2+3, 4+9, \ldots, 2^n + 3^n, \ldots$
# Последовательность $1, 1, 4, 9, 25, \ldots, f_k^2,\ldots$ ($f_i$ --- числа Фибоначчи).
# Найдите производящую функцию для чисел "трибоначчи" $f_0=f_1=f_2=1$, $f_n = f_{n-1}+f_{n-2}+f_{n-3}$.
# Найдите производящую функцию для последовательности, заданной рекуррентностью $f_0=f_1=f_2=1$, $f_n = f_{n-1}-2f_{n-3}$.
# Пользуясь производящей функцией для чисел Фибоначчи, докажите утверждение, что $f_0+f_1+\ldots+f_n=f_{n+2}-1$.
# Пользуясь производящей функцией для чисел Фибоначчи, докажите утверждение, что $f_0+f_2+\ldots+f_{2n}=f_{2n+1}$.
# Пользуясь производящей функцией для чисел Фибоначчи, докажите утверждение, что $f_1+f_3+\ldots+f_{2n-1}=f_{2n}-1$.
# Пользуясь производящей функцией для чисел Фибоначчи, докажите утверждение, что $f_0^2+f_1^2+f_2^2+\ldots+f_n^2=f_nf_{n+1}$.
# Найдите производящую функцию для количества строк длины $n$ над алфавитом $\{0, 1\}$, не содержащих три нуля подряд.
# Найдите производящую функцию для количества строк длины $n$ над алфавитом $\{0, 1\}$, не содержащих подстроки 010.
# Найдите производящую функцию для количества строк длины $n$ над алфавитом $\{0, 1\}$, не содержащих подстроки 011.
# Обозначим за $a_n$ количество способов разменять $n$ рублей монетами по $1$, $2$ и $5$ рублей (порядок монет важен). Постройте производящую функцию для $a_n$.
# То же самое, что в предыдущем задании, но порядок монет не важен.
# Можно заметить, что производящая функция последовательности $a_n = n^m$ будет иметь вид $\frac {P_m(s)}{(1-s)^{m+1}}$. Выведите рекуррентное соотношение для коэффициентов многочленов $P_{m, k}$.
# Оказывается, что коэффициенты $P_{m,k}$ также являются количеством некоторых комбинаторных объектов. Каких?