Изменения
Нет описания правки
# Множество $A \subset \mathbb{N} \times \mathbb{N}$ разрешимо. Можно ли утверждать, что множество «нижних точек» множества $A$, то есть множество $B = \{\langle x,y\rangle | (\langle x,y\rangle \in A)$ и $(\langle x,z\rangle \not\in A$ для всех $z < y)\}$ является разрешимым?
# В предыдущем задании можно ли утверждать, что $B$ перечислимо, если $A$ перечислимо?
# Используя теорему о рекурсии, докажите, что язык программ, которые останавливаются на пустом вводе, является неразрешимым. Является ли этот язык перечислимым?
# Используя теорему о рекурсии, докажите, что язык программ, которые не останавливаются на пустом вводе, является неразрешимым. Является ли этот язык перечислимым?
# Используя теорему о рекурсии, докажите, что язык программ, которые допускают бесконечное число слов, является неразрешимым.
# Используя теорему о рекурсии, докажите, что язык программ, которые допускают свой собственный исходный код, является неразрешимым.
# Докажите, что существуют две различные программы $p$ и $q$, такие что программа $p$ печатает текст программы $q$, а программа $q$ печатает текст программы $p$.
# Докажите, что существует бесконечная последовательность различных программ $p_i$, такая что $p_1$ печатает пустую строку, а $p_i$ печатает текст программы $p_{i-1}$.
# Докажите, что существует бесконечная последовательность различных программ $p_i$, такая что $p_i$ печатает текст программы $p_{i+1}$.
# Докажите, что для любого конечного $n$ существует последовательность программ $p_1, p_2, \ldots, p_n$, что $p_i$ печатает текст $p_{i+1}$, а $p_n$ печатает текст $p_1$.
# Докажите, что язык программ, для которых не существует более короткой программы, которая на любом входе ведёт себя так же, является неразрешимым.
# Докажите, что язык программ, для которых не существует программы такой же длины, которая на любом входе ведёт себя так же, является либо конечным, либо неразрешимым.
# Busy Beaver. Функция $BB(n)$ возвращает длину максимальной строки, которую программа длины $n$ может вывести на пустом входе и завершиться. Докажите, что $BB$ является невычислимой.
# Докажите, что для любой всюду определенной вычислимой функции $f$ найдется значение $n$, для которого $BB(n) > f(n)$.
# Докажите, что для любой всюду определенной вычислимой функции $f$ найдется бесконечно много значений $n$, для которых $BB(n) > f(n)$.
# Колмогоровская сложность. $K(s)$ это длина минимальной программы, которая на пустом входе выводит строку $s$ и завершается. Докажите, что $K$ является невычислимой.
# Пусть для любой строки $s$ выполнено $K(s) \ge f(s)$, где $f$ — всюду определенная вычислимая функция. Докажите, что найдется константа $C$, такая что $f(s) \le C$ для любой $s$.
# Специальное задание: выберите нетривиальный язык программирования и напишите на нём программу, которая выводит свой собственный код. Не используйте код из интернета, напишите сами. Языки программирования всех студентов в рамках одной группы должны быть различны.
# Специальное задание: выберите нетривиальный язык программирования и напишите на нём программы, которые демонстрируют решение одного из заданий 172-175. В рамках одной группы пара (язык программирования - номер задания) должна быть уникальной. Выберите язык программирования, отличный от предыдущего задания.