Изменения

Перейти к: навигация, поиск

Нормированные пространства

475 байт добавлено, 23:27, 13 апреля 2011
Полнота евклидова пространства
Если последовательность сходится, то из неравенства <tex>|x_j^{(m)} - x_j| \le \|x^{(m)} - x\|</tex> устанавливается, что последовательность сходится и покоординатно.
Пусть для любого <tex>j</tex> выполняется <tex>x_j^{(m)} \rightarrow x_j</tex>. Из определения предела, для любого <tex>\varepsilon</tex> существует <tex>M_j</tex>, для которого <tex>|x_j^{(m)} - x_j| \le \varepsilon / \sqrt n</tex>. Тогда для <tex>m > M = M_1 + \dots + M_n</tex> написанное выше неравенство выполняется для всех <tex>j</tex>. <tex>\|\overline x^{(m)} - \overline x\| = \sqrt{\sum\limits_{j = 1}^n |x_j^{(m)} - x_j|^2} \le \sqrt{\sum\limits_{j = 1}^n \frac{\varepsilon^2}n} = \sqrt{n \frac{\varepsilon^2}n} = \varepsilon</tex>, следовательно, утверждение доказано по определению предела.
}}
[[Категория:Математический анализ 1 курс]]
Анонимный участник

Навигация