Изменения

Перейти к: навигация, поиск

Реляционная алгебра: соединения, деление

38 байт добавлено, 15:50, 20 декабря 2021
м
Большое деление
* <tex>A ⋇ B = \{(x, z) \in \pi_X(A) \times \pi_Z(B) \, | \, \forall y \in \pi_Y(\sigma_{Z=z}(B)): \,\, (x, y) \in A\}</tex> — интерпретация определения на языке кванторов
* Для Если <tex>C = A ⋇ B</tex>, то для каждого <tex>z \in Z</tex> верно <tex>\pi_x(\sigma_{Z=z}(C)) = A \div \pi_Y(\sigma_{Z=z}(B))</tex> — интерпретация большого деления как "деление для каждого <tex>z</tex>"
* <tex>A ⋇ B = \pi_X(A) \times \pi_Z(B) \setminus \pi_{XZ}(\pi_X(A) \times B \setminus A \Join B)</tex> — выражение большого деления через простейшие операции реляционной алгебры
9
правок

Навигация