Изменения

Перейти к: навигация, поиск
Нет описания правки
В этом разделе будет рассмотрена связь между языками [[Реляционная алгебра|реляционная алгебра]] и [[Исчисление кортежей|исчисление кортежей]], которой является одной из разновидностей [[Реляционное исчисление|реляционного исчисления]].
== Алгебра через исчисление ==
Выразим Для того, чтобы показать связь между языками, сначала выразим операции реляционной алгебры через операции реляционного исчисления. Начнем с простых операций алгебры, далее перейдем к более сложным.
=== Проекция <tex>\pi_{A_1,\ldots,A_n}(R)</tex> ===
Проекция выражается, как select необходимого набора атрибутов:
<font color = blue>select</font> A1<font color = gray>$,\ldots,$</font>An <font color = blue>from</font> R
=== Фильтр <tex>\sigma_\theta(R)</tex> ===
Чтобы сделать фильтрацию необходимо добавить в запрос в секцию where соответствующее условие:
<font color = blue>from</font> R <font color = blue>where</font> <font color = red>$\theta$</font>
=== Дополнительный столбец <tex>\varepsilon_{A=expr}(R)</tex> ===
Для того, чтобы добавить дополнительный столбец, необходимо обозначить соответсвующее выражение в секции select в явном виде:
<font color = blue>select</font> R<font color = grey>.*,</font> expr <font color = blue>as</font> A <font color = blue>from</font> R
=== Объединение <tex>R_1 \cup R_2</tex> ===
Для объединения отношений используется стандартный синтаксис перечисления их через запятую при объявлении переменной:
R <font color = grey>::</font> R1<font color = grey>,</font> R2
Отметим, что для того, чтобы сделать объединение, отношения должны быть совместимыми, то есть должны иметь одинаковый набор атрибутов. Аналогично будет для следующей операции {{---}} разности отношений.
=== Разность <tex>R1 \smallsetminus R2</tex> ===
Разность отношений R1 и R2 {{---}} это такие из R1, что не существует R2, с которым оно совпадает. Соответственно запрос в исчислении кортежей выражается так:
R <font color = grey>::</font> R1 <font color = blue>where $\lnot\exists$</font>R2 <font color = grey>(</font>R1 <font color = grey>=</font> R2<font color = grey>)</font>
Под записью R1 = R2 в секции условия имеется в виду равенство для всех соответствующих атрибутов.
=== Декартово произведение <tex>R_1 \times R_2</tex> ===
Для того, чтобы выразить декартово произведения, тоже используется синтаксис с запятой, но уже в секции from:
R1<font color = grey>.*,</font> R2<font color = grey>.*</font> <font color = blue>from</font> R1<font color = grey>,</font> R2
=== Естественное соединение <tex>R_1 \bowtie R_2</tex> ===
Естественное соединение выражается как декартово произведение, но с дополнительным условием, что соответсвующие атрибуты равны:
R1<font color = grey>.*,</font> R2<font color = grey>.*</font> <font color = blue>from</font> R1<font color = grey>,</font> R2 <font color = blue>where</font>
R1<font color = grey>.</font><font color = red>Атрибуты</font> <font color = grey>=</font> R2<font color = grey>.</font><font color = red>Атрибуты</font>
=== Реляционная полнота исчисления кортежей ===
Набор перечисленных операций составляет базис операций реляционной алгебры. Все Показали, что все операции этого набора можно эмулировать в терминах реляционного исчисления. Из этого следует, что выразительна мощность реляционного исчисления не меньше выразительной мощности реляционной алгебры.
== Исчисление через алгебру ==
Анонимный участник

Навигация