Изменения
Нет описания правки
{| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
|+
|-align="center"
|'''НЕТ ВОЙНЕ'''
|-style="font-size: 16px;"
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
''Антивоенный комитет России''
|-style="font-size: 16px;"
|Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
|-style="font-size: 16px;"
|[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
|}
Пусть дано множество из <tex>n</tex> отрезков и требуется найти все точки их пересечения. Очевидно, что задачу можно решить полным перебором за <tex>O(n^2)</tex>; ясно также, что любой алгоритм будет в худшем случае работать за <tex>\Theta(n^2)</tex> (нетрудно привести пример, когда количество пересечений квадратично, а алгоритм обязан сообщить о каждом пересечении). Однако существуют алгоритмы, которые оптимальнее, если количество точек пересечения отрезков невелико. Так алгоритм Бентли-Оттмана (англ. Bentley-Ottmann) позволяет решить задачу о пересечении отрезков, используя <tex>O((n+I)\log{n})</tex> времени и <tex>O(n)</tex> памяти, где <tex>I</tex> {{---}} количество пересечений.