Изменения

Перейти к: навигация, поиск

Список заданий по теории сложности 2023

8317 байт добавлено, 20:20, 19 апреля 2023
Нет описания правки
# Будем считать, что $NP \ne coNP$, верно ли, что $coNP \subset DP$?
# Рассмотрим язык $EXACTINDSET = \{\langle G, k\rangle | \text{ максимальное}$ $\text{независимое множество в графе $G$ имеет размер $k$}\}$. Докажите, что $EXACTINDSET$ является полным для класса $DP$ относительно полиномиального сведения.
# Докажите, что если $\Sigma_i = \Pi_i$, то $\Sigma_{i} = \Sigma_{i+1}$.
# Докажите, что $\Sigma_{i+1} = NP^{\Sigma_i}$.
# Задайте $\Pi_{i+1}$ через классы $i$-го уровня $PH$ на языке оракулов.
# Докажите, что если $P = NP$, то $P = PH$.
# Докажите, что если если у $PH$ существует полный относительно сведения по Карпу за полином язык, то $PH = \Sigma_i$ для некоторого $i$.
# Докажите, что если $PH = PS$, то $PH = \Sigma_i$ для некоторого $i$.
# Докажите, что если $P^A = NP^A$, то $PH^A \subset P^A$.
# Докажите, что $EXACTINDSET \in \Sigma_2 \cup \Pi_2$. Сделайте вывод про место $DP$ в полиномиальной иерархии.
# Адаптируйте доказательство теоремы Фортноу $SAT \not\in TISP(n^c, n^d)$ для любых $c$ и $d$ где $c(c+d) < 2$.
# Докажите, что задача $CIRCSAT$ о проверке удовлетворимости булевой схемы из функциональных элементов является $NP$-полной.
# Предложите разрешимый язык из $P/poly$, который не лежит в $P$.
# Докажите, что $Sparse \subset P/poly$ ($Sparse$ - множество языков, которые имеют лишь полиномиальное число слов каждой длины).
# Докажите, что для любого $k > 0$ в $PH$ найдется язык, со схемной сложностью $\Omega(n^k)$.
# Докажите, что для любого $k > 0$ в $\Sigma_2$ найдется язык, со схемной сложностью $\Omega(n^k)$.
# Докажите, что существует язык из $DSPACE(2^{O(n)})$, которой не принадлежит $SIZE(2^{o(n)})$.
# Докажите, что если $EXP \subset P/poly$, то $EXP = \Sigma_2$.
# Докажите, что если $P=NP$, то в $EXP$, есть язык со схемной сложностью $\Omega(2^n/n)$.
# Докажите, что умножение булевых матриц лежит в $NC$ (иначе говоря, существует схема глубиной $\log^k(n)$ для умножения матриц $n \times n$ для некоторой константы $k$).
# Выведите из предыдущего задания, что $PATH \in NC$.
# Выведите из предыдущего задания, что $NL \subset NC$.
# Докажите, что $NC^1 \subset L$ ($L$ здесь log space).
# Докажите, что $BPP \subset PS$.
# Обозначим как $PP^+$ как класс языков, для которых существует вероятностная программа $M$, работающая за полином, что если $x \in L$, то $P(M(x) = 1) > 1/2$, а если $x \notin L$, то $P(M(x) = 0) \ge 1/2$. Докажите, что $PP^+ = PP$.
# Докажите, что $NP \subset PP$.
# Докажите, что если для $L$ найдется программа $M$ с полиномиальным временем работы и полином $p > 0$, такие что $P(M(x) = [x \in L]) \ge \frac{1}{2} + \frac{1}{p(|x|)}$, то $L \in BPP$.
# Докажите, что если $L \in BPP$, то для любого полинома $p > 1$ найдется программа $M$ с полиномиальным временем работы, такая что $P(M(x) = [x \in L]) \ge 1 - 2^{-p(|x|)}.$
# Определим класс $RL$ как класс языков $L$, для которых найдется вероятностная программа $M$, использующая $O(\log n)$ дополнительной памяти, такая что если $x \in L$, то $P(M(x) = 1) \ge 1/2$, если $x \notin L$, то $P(M(x) = 1) = 0$. Докажите, что $RL \subset P$
# Докажите, что задача проверки того, что в неориентированном графе есть путь из $s$ в $t$, лежит в $RL$.
# Почему решение предыдущей задачи не удается распространить на ориентированные графы?
# Докажите, что если $NP \subset BPP$, то $NP = RP$.
# В определении $ZPP$ нет требования, чтобы на любой вероятностной ленте программа завершалась. Докажите, что если добавить это ограничение, определение класса $ZPP$ не поменяется.
# При симуляции $random(n)$ с помощью бросков честной монеты (или абстракции вероятностной ленты) математическое ожидание времени работы $random(n)$ равно $O(\log n)$, но нет ограничения сверху на число бросков. Кажется, что это может испортить определение классов $RP$ или $BPP$, потому что в них время работы программы должно быть ограничено сверху. Докажите, что это не так и можно разрешить конструкции $random(n)$ в вероятностных программах из определения $RP$ или $BPP$, даже если на самом деле в модели вычислений есть доступ к источнику случайности только с распределением честной монеты.
# Нечестные монеты с нерациональным $p$ могут привести к парадоксам. Докажите, что существует такое $p$, такой неразрешимый язык $L$ и такая программа $A$, что если у программы $A$ есть доступ к источнику случайности с распределением нечестной монеты с вероятностью выпадения $1$ равной $p$, то она может распознать язык $L$ за полиномиальное время.
# Полные языки для $BPP$. Будем называть $A\in BPP$ язык полным для $BPP$, если для любого языка $B \in BPP$ выполнено $B \le A$. Петя предполагает, что язык $BH_{1DP} = \{\langle p, x, 1^t \rangle\}$, где $p$ — вероятностная программа, допускающая $x$ за время $t$ с вероятностью не меньше $2/3$ является полным для $BPP$. Прав ли Петя?
# Вероятностные сведения. Будем говорить, что $B$ вероятностно сводится к $C$ и писать $B \le_r C$, если найдется такая вероятностная программа $p$, работающая за полином, что $P([x \in B] = [p(x) \in C]) \ge 2/3$. Докажите, что если $C \in BPP$, $B \le_r C$, то $B \in BPP$.
# Докажите, что $\le_r$ не является транзитивным отношением.
# Класс $BP\cdot NP$ определяется как множество $\{A | A \le_r 3SAT\}$. Докажите, что $NP \subset BP\cdot NP$.
# Докажите, что $BPP \subset BP\cdot NP$.
# Докажите, что $BP\cdot NP \subset \Sigma_3$.
# Докажите, что если $\overline{3SAT} \subset BP\cdot NP$, то $PH = \Sigma_3$.
# Определим класс $BPL$ как класс языков $L$, для которых найдется вероятностная программа $M$, использующая $O(\log n)$ дополнительной памяти, такая что если $P(M(x) = [x \in L]) \ge 2/3$. Докажите, что $BPL \subset P$.
# Докажите, что $BPL \subset SC$.

Навигация