Изменения

Перейти к: навигация, поиск

Список заданий по ДМ 2к 2024 весна

3914 байт добавлено, 25 апрель
Нет описания правки
# Множество называется m-полным, если к нему m-сводится любое перечислимое множество. Докажите, что универсальное множество является $m$-полным.
# Докажите, что диагональ универсального множества (множество $\{u | (u, u) \in U\}$ является m-полным.
# Используя теорему о рекурсии, докажите, что язык программ, которые останавливаются на пустом вводе, является неразрешимым. Является ли этот язык перечислимым?
# Используя теорему о рекурсии, докажите, что язык программ, которые не останавливаются на пустом вводе, является неразрешимым. Является ли этот язык перечислимым?
# Используя теорему о рекурсии, докажите, что язык программ, которые допускают бесконечное число слов, является неразрешимым.
# Используя теорему о рекурсии, докажите, что язык программ, которые допускают свой собственный исходный код, является неразрешимым.
# Докажите, что существуют две различные программы $p$ и $q$, такие что программа $p$ печатает текст программы $q$, а программа $q$ печатает текст программы $p$.
# Докажите, что существует бесконечная последовательность различных программ $p_i$, такая что $p_1$ печатает пустую строку, а $p_i$ печатает текст программы $p_{i-1}$.
# Докажите, что существует бесконечная последовательность различных программ $p_i$, такая что $p_i$ печатает текст программы $p_{i+1}$.
# Докажите, что для любого конечного $n$ существует последовательность программ $p_1, p_2, \ldots, p_n$, что $p_i$ печатает текст $p_{i+1}$, а $p_n$ печатает текст $p_1$.
# Докажите, что язык программ, для которых не существует более короткой программы, которая на любом входе ведёт себя так же, является неразрешимым.
# Докажите, что язык программ, для которых не существует программы такой же длины, которая на любом входе ведёт себя так же, является либо конечным, либо неразрешимым.
# Докажите, что для любой всюду определенной вычислимой функции $f$ найдется значение $n$, для которого $BB(n) > f(n)$.
# Докажите, что для любой всюду определенной вычислимой функции $f$ найдется бесконечно много значений $n$, для которых $BB(n) > f(n)$.
# Пусть для любой строки $s$ выполнено $K(s) \ge f(s)$, где $f$ — всюду определенная вычислимая функция. Докажите, что найдется константа $C$, такая что $f(s) \le C$ для любой $s$.
# Рассмотрим функцию $S(n)$, равную максимальной длине строки, выводимой программой длины $n$ на пустом входе. Докажите, что $S(n)$ невычислима.
# Рассмотрим произвольную всюду определенную вычислимую функцию $f : \Sigma^* \to \Sigma^*$. Докажите, что существует программа $p$, что $L(p) = L(f(p))$.

Навигация