257
правок
Изменения
Нет описания правки
Разложим знаменатель на множители и разобьём дробь на сумму простых дробей <ref>[http://www.genfunc.ru/theory/pril04/ О разложении рациональной функции в ряд]</ref>:
<tex> G(z) =\dfrac{1-6z+11z^2-5z^3}{(1-6z+8z^2)(1-z)^2}=\dfrac{1-6z+11z^2-5z^3}{(1-2z)(1-4z)(1-z)^2}=\dfrac{1/3}{(1-z)^2}+\dfrac{7/9}{1-z}-\dfrac{1/2}{1-2z}+\dfrac{7/18}{1-4z}</tex>
Разложим первое слагаемое в ряд, используя расширенные биномиальные коэффициенты <ref>[http://www.genfunc.ru/theory/pril02/ Расширенные биномиальные коэффициенты]</ref>:
== Приложения ==
=== Примеры простых производящих функций ===
<!--easy биномы увеличить, но так имхо лучше--->На последнем шаге приведения производящей функции к замкнутому виду требуется разложить полученные слагаемые в ряд. Для этого можно воспользоваться таблицей основных производящих функций <ref>[http://www.genfunc.ru/theory/pril03/ Таблица производящих функций]</ref>.
Все суммы выполняются по переменной <tex>n</tex> от <tex>0</tex> до <tex>\infty</tex>. Элементы последовательности нумеруются от <tex>0</tex>.
== Источники информации ==
* [http://kvant.mirror1.mccme.ru/1988/11/razbienie_chisel.htm Вайнштейн Ф., Разбиение чисел. Журнал "Квант" № 11, 1988 год]
* [http://en.wikipedia.org/wiki/Generating_function Wikipedia {{---}} Generating function]
* [[Нахождение количества разбиений числа на слагаемые|Нахождение количества разбиений числа на слагаемые. Пентагональная теорема Эйлера]]