Изменения

Перейти к: навигация, поиск

Теорема о базах

51 байт добавлено, 06:42, 17 мая 2011
Нет описания правки
3) если <tex>B_1, B_2 \in B_s</tex>, то для <tex>\forall b_1 \in B_1 \: \exists b_2 \in B_2 </tex> такой, что <tex>(B_1 \setminus b_1) \cup b_2 \in B_s</tex>.
|proof=
1) Следует из первой аксиомы [[Определение матроида|определения матроида]]; . <br>
2) Из теоремы о равномощности баз следует, что <tex>B_1 \neg \subset B_2</tex> и <tex>B_2 \neg \subset B_1</tex>.
А с условием <tex>B_1 \ne B_2</tex> получаем <tex>B_1 \nsubseteq B_2</tex> и <tex>B_2 \nsubseteq B_1</tex>; . <br>3) По второй аксиоме [[Определение матроида|определения матроида]] <tex>\forall b_1 \in B_1</tex> верно, что <tex>(B_1 \setminus b_1) \in I</tex> . <br>
По теореме о равномощности баз <tex>|B_2|>|B_1 \setminus b_1|</tex>. <br>
Значит по третьей аксиоме [[Определение матроида|определения матроида]] <tex>\exists b_2 \in B_2 </tex> такой, что <tex>(B_1 \setminus b_1) \cup b_2 \in I</tex>. <br>
А так как <tex>|(B_1 \setminus b_1) \cup b_2| = |B_1| \:</tex> и <tex>B_1</tex> — база, то <tex>(B_1 \setminus b_1) \cup b_2 \in B_s</tex>, что и требовалось доказать.
}}
Анонимный участник

Навигация