Изменения

Перейти к: навигация, поиск
Нет описания правки
<tex>\varphi_j(t) = ta_j + (1-t)b_j, \quad \varphi'_{j}(t) = a_j - b_j</tex>
<tex>g</tex> - непрерывна на <tex>[0,1]</tex> и дифференцируема на нем. Значит к ней применима формула Лагранжа конечных приращений : <tex>g(b1) - g(a0) = g'(\Theta), \quad \Theta \in [0,1]</tex>
Заменяя <tex>g</tex> и <tex>g'</tex> по найденным формулам, получаем :
Для разных <tex>i</tex> - разные <tex>\Theta_i</tex>. Однако формула Лагранжа допускает распространение и на абстрактную ситуацию, но в несколько другом виде.
{{Теорема
|author=
Неравенство Лагранжа
|statement=
Пусть <tex>V</tex> - шар в <tex>\mathbb{R}^n, \quad \mathcal{F} : V \to \mathbb{R}^m \quad \mathcal{F}</tex> - дифференцируема в каждой точке шара, тогда <tex>\forall \overline{a},\overline{b} \in V : \left|\left| \mathcal{F}(\overline{b}) - \mathcal{F}(\overline{a})\right|\right| \le M\left|\left|\overline{b}-\overline{a}\right|\right|</tex>, где <tex>M = \sum\limits_{x \in [\overline{a},\overline{b}]} \left|\left|\mathcal{F}(\overline{x})\right|\right|</tex>
|proof=
По доказанному ранее, для <tex>\mathcal{F}(\overline{b}) - \mathcal{F}(\overline{a}) \in \mathbb{R}^m </tex> существует линейный непрерывный функционал <tex>\varphi : \varphi(\mathcal{F}(\overline{a}) - \mathcal{F}(\overline{b})) = \left|\left|\mathcal{F}(\overline{a}) - \mathcal{F}(\overline{b})\right|\right|, \quad ||\varphi|| = 1</tex>
 
<tex>g(t) = \varphi(\mathcal{F}(\overline{a} + t(\overline{b} - \overline{a})), \quad t \in [0, 1]</tex>
 
Так как шар - выпуклый, все корректно, <tex>\varphi' = \varphi</tex>. Значит, <tex>g</tex> на <tex>[0,1]</tex> удовлетворяет классической формуле Лагранжа конечных приращений : <tex>g(1) - g(t) = g'(\Theta), \quad \Theta \in (0,1)</tex>
 
По построению, <tex>g(1) - g(0) = \varphi(\mathcal{F}(\overline{b})) - \varphi(\mathcal{F}(\overline{a})) = \varphi(\mathcal{F}(\overline{b}) - \overline{a}) = \left|\left|\mathcal{F}(\overline{b}) - \mathcal{F}(\overline{a})\right|\right|</tex>
 
Тогда <tex>\left|\left|\mathcal{F}(\overline{b}) - \mathcal{F}(\overline{a}) \right|\right| = g'(\Theta)</tex>
 
<tex>g'(t) = \varphi'\mathcal{F}(\overline{a}+t(\overline{b}-\overline{a}))(\overline{b}-\overline{a})</tex>
 
<tex>||g'(t)|| \le ||\varphi'||\cdot ||\mathcal{F}'(\overline{a} + t(\overline{b} - \overline{a}))|| \quad ||\overline{b} - \overline{a}|| = 1 \cdot M \cdot ||\overline{b}-\overline{a}||</tex>
 
Подставляя это в формулу конечных приращений Лагранжа: <tex>g(1) - g(0) = g'(\Theta)</tex>, приходим к неравенству Лагранжа.
}}
Анонимный участник

Навигация