1679
правок
Изменения
Нет описания правки
Действия с операторами производятся стандартным образом, поточечно. ПримерыРассмотрим частный случай: <tex>A\colon \mathbb{R}^n \to \mathbb{R}^m, \overline x \in \mathbb{R}^n, \overline x = \sum \limits_{k=1}^n x_k \overline {e_k}, x_k=\left \langle \overline x, \overline {e_k}\right \rangle</tex>. Тогда <tex>A \left (\overline {x_k} \right ) = \sum \limits_{k=1}^n x_k A \left ( \overline {e_k} \right ) </tex> Таким образом, если оператор действует из конечномерного пространства, то он вполне определён по его значению на базисных точках. Если он действует в конечномерное пространство, <tex>A \left ( \overline {e_k} \right ) = \sum \limits_{j=1}^m a_{jk} \overline{e_j}'</tex>. <tex>A \left ( \overline x \right ) = \sum \limits_{k=1}^n \sum \limits_{j=1}^m \left ( a_{jk}x_k\overline{e_j}' \right ) = \sum \limits_{j=1}^m \left ( \sum \limits_{k=1}^n a_{jk} x_k \right ) \overline{e_j}' </tex> <tex>\overline y = A \overline x, y_j = \sum \limits_{k=1}^n a_{jk} x_k</tex> — здесь отчётливо видно правило умножения матриц. Отсюда понятно, почему часто устанавливают связь между линейными операторами и матрицами: <tex>A \colon \mathbb{R}^n \to \mathbb{R}^m \longleftrightarrow A = \left ( a_{jk} \right )</tex>, где <tex>j</tex> и <tex>k</tex> пробегают от <tex>n</tex> до <tex>m</tex> соответственно, а <tex>A \overline x </tex> — результат действия л.о. <tex>A</tex> на точку <tex>\overline x</tex> можно представить в виде произведения матрицы <tex>A</tex> и столбца <tex>x</tex>. В <tex>\mathbb{R}^n</tex> сходимость покоординатная. <tex>\left | \sum \limits_{k=1}^m a_{jk} x_k \right | \le \sum \limits_{k=1}^m \left | a_{jk} \right | \left | x_k \right | \le \sqrt {\sum \limits_{k=1}^m \left | a_{jk} \right | ^ 2} \left \| \overline x \right \|</tex>, таким образом, из <tex>\overline x \to 0</tex> неизбежно следует <tex>\sum \limits_{k=1}^m a_{jk} x_k \to 0</tex> Дальше, если верить моему конспекту, говорится, что, таким образом, линейный оператор, действующий из <tex>\mathbb{R}^n</tex> и/или в <tex>\mathbb{R}^n</tex>, всегда непрерывен.
Пользуясь классическими неравенствами типа Коши, легко оценить норму такого оператора: <tex>\left \| \overline y \right \| = \sqrt{\sum \limits_{j=1}^m y^{2}_j},~ y^{2}_j \le \left ( \sum \limits_{k=1}^n a_{jk}^2 \right ) \left \| \overline x \right \| ^ 2 </tex><br>
<tex>\left \| \overline y \right \| ^ 2 \le \sum \limits_{j=1}^m \left ( \sum \limits_{k=1}^n a_{jk}^2 \right ) \left \| \overline x \right \|</tex><br>