Изменения

Перейти к: навигация, поиск
м
Нет описания правки
<tex>\overline y = \mathcal{A} \overline x, y_j = \sum \limits_{k=1}^n a_{jk} x_k</tex> — здесь отчётливо видно правило умножения матриц. Отсюда понятно, почему часто устанавливают связь между линейными операторами и матрицами: <tex>\mathcal{A} \colon \mathbb{R}^n \to \mathbb{R}^m \longleftrightarrow \mathcal{A} = \left ( a_{jk} \right )</tex>, где <tex>j</tex> и <tex>k</tex> пробегают от <tex>n</tex> до <tex>m</tex> соответственно, а <tex>\mathcal{A} \overline x </tex> — результат действия л.о. <tex>\mathcal{A}</tex> на точку <tex>\overline x</tex> можно представить в виде произведения матрицы <tex>\mathcal{A}</tex> и столбца <tex>x</tex>.
В <tex>\mathbb{R}^n</tex> сходимость покоординатная. <tex>\left | \sum \limits_{k=1}^m a_{jk} x_k \right | \le \sum \limits_{k=1}^m \left | a_{jk} \right | \left | x_k \right | \le \sqrt {\sum \limits_{k=1}^m \left | a_{jk} \right | ^ 2} \left \| \overline x \right \|</tex>(по неравенству Коши для сумм), таким образом, из <tex>\overline x \to 0</tex> неизбежно следует <tex>\sum \limits_{k=1}^m a_{jk} x_k \to 0</tex>
Итак, линейный оператор, действующий из одного конечномерного пространства в другое, всегда непрерывен.
Пользуясь классическими неравенствами типа Коши, легко оценить норму такого оператора:  <tex>\left \| \overline y \right \| = \sqrt{\sum \limits_{j=1}^m y^{2}_j},~ </tex> <tex> y^{2}_j \le \left ( \sum \limits_{k=1}^n a_{jk}^2 \right ) \left \| \overline x \right \| ^ 2 </tex>.
<tex>\left \| \overline y \right \| ^ 2 \le \sum \limits_{j=1}^m \left ( \sum \limits_{k=1}^n a_{jk}^2 \right ) \left \| \overline x \right \|</tex>

Навигация