Изменения
Нет описания правки
Пусть <tex> f_{n} </tex> интегрируема и равномерно сходится к <tex> f </tex> на <tex> [a; b] </tex>. Тогда <tex> f </tex> тоже интегрируема, и
<tex> \lim \limits_{n \to \infty} \int\limits_{a}^{b} f_{n} = \int\limits_{a}^{b}f </tex>.
8)
Пусть на <tex> (a, b) </tex> задан функциональный ряд <tex>\sum\limits_{n = 1}^{\infty} f_n</tex>, <tex>\exists c \in \langle a, b \rangle, \sum\limits_{n = 1}^{\infty}f_n(c)</tex> - сходится.
Пусть также <tex>\exists f_n'</tex> - непрерывна на <tex>\langle a, b \rangle</tex> и
<tex>\sum\limits_{n = 1}^{\infty} f_n'</tex> - равномерно сходится на <tex>\langle a, b\rangle</tex>, тогда на <tex>\langle a, b \rangle</tex> выполняется :
<tex>(\sum\limits_{n = 1}^{\infty} f_n(x))' = \sum\limits_{n = 1}^{\infty}f_n'(x)</tex>.
9)
Пусть для некоторого <tex>x_0</tex> <tex>\sum\limits_{n = 0}^{\infty} a_n x_0^n</tex> {{---}} сходится.
Тогда <tex>\forall x_1 : |x_1| < |x_0|</tex> ряд <tex>\sum\limits_{n = 0}^\infty |a_n x_1^n|</tex> сходится.