1632
правки
Изменения
м
Докажем первый пункт. 1) По определению предела в метрических пространствах, <tex>x_n \rightarrow x \iff \|x_n - x\| \rightarrow 0</tex>.
Второй 2) Пусть <tex> \alpha_n = \alpha + \Delta \alpha_n </tex>, <tex> x_n = x + \Delta x_n </tex>; <tex>\Delta \alpha_n, \Delta x_n</tex> стремятся к нулю при <tex> n \rightarrow \infty </tex>. Тогда <tex> \| \alpha_n x_n - \alpha x \| = \| (\alpha + \Delta \alpha_n) (x + \Delta x_n) - \alpha x \| = </tex> <tex> = \| \alpha \Delta x_n + \Delta \alpha_n x + \Delta \alpha_n \Delta x_n \| \le \| \alpha \Delta x_n \| + \| \Delta \alpha_n x \| + \| \Delta \alpha_n \Delta x_n \| \rightarrow 0</tex>. 3) <tex>\|x_n\| = \|x + (x_n - x)\| \le \|x\| + \|x_n - x\| \Rightarrow \|x_n\| - \|x\| \le \|x_n - x\| </tex> Аналогично, <tex> \|x\| - \|x_n\| \le \|x_n - x\| </tex>. Значит, <tex> \left|\|x_n\| - \|x\|\right| \le \|x_n - x\| </tex>, при <tex> \|x_n - x\| \rightarrow 0 \quad \left|\|x_n\| - \|x\|\right| \rightarrow 0</tex>, что и третий пункты доказываются аналогичнотребовалось доказать.
Остутсвие Отсутствие в <tex> \ell^2 </tex> компактности шаров - принциальное отличие бесконечномерной ситуации.
rollbackEdits.php mass rollback
{{Утверждение
|id=limits
|statement=
Пусть <tex>x_n</tex>, <tex>y_n</tex> — последовательности точек нормированного пространства <tex>(X, \|\cdot\|)</tex>, а <tex>\alpha_n</tex> — вещественная последовательность. Известно, что <tex>x_n \rightarrow x</tex>, <tex>y_n \rightarrow y</tex>, <tex>\alpha_n \rightarrow \alpha</tex>.
|proof=
<tex>\|(x_n + y_n) - (x + y)\| = \|(x_n - x) + (y_n - y)\| \le \|x_n - x\| + \|y_n - y\| \rightarrow 0</tex> по арифметике числовых пределов. Но, поскольку <tex>\|(x_n + y_n) - (x + y)\| \ge 0</tex> по определению нормы, то по принципу сжатой переменной <tex>x_n + y_n \rightarrow x + y</tex>.
}}
В <tex> \mathbb{R}^n </tex> - любой шар компактен, так как его можно погрузить в компактный параллелепипед.
Из шара можно высверлить бесконечно много дырок одинакового радиуса( <tex>R = \frac{\sqrt2}{10} </tex>) , и он не развалится.
<strike>''КАРТИНОЧКА''</strike> никому не нужна, вы ведь не хотите загреметь в сумашедший сумасшедший дом из-за попытки представить высверливание дырок в бесконечномерном шаре? Вот и славненько.
{{Определение