Изменения

Перейти к: навигация, поиск

Иерархия Хомского формальных грамматик

6995 байт добавлено, 12:39, 11 марта 2018
См. также
{{Определение
|definition=
'''Иерархия Хомского''' (англ. ''Chomsky hierarchy'') {{---}} классификация [[формальные грамматики|формальных грамматик]] и [[формальные грамматики|задаваемых ими языков]], согласно которой они делятся на 4 класса по их условной сложности.
}}
== Класс 0 ==
К нулевому классу относятся все [[Формальные_грамматики|формальные грамматики]]. Элементы этого класса называются '''неограниченные грамматикинеограниченными грамматиками''' (англ. ''unrestricted grammars''), поскольку на них не накладывается никаких ограничений. Они задают все языки, которые могут быть распознаны [[Машина_Тьюринга|машиной Тьюринга]]. Эти языки также известны как '''[[Перечислимые_языки|рекурсивно перечислимые]]''' (англ. ''recursively enumerable'').  Правила можно записать в виде: <tex>\alpha \rightarrow \beta</tex>, где <tex>\alpha</tex> — любая непустая цепочка, содержащая хотя бы один нетерминальный символ, а <tex>\beta</tex> — любая цепочка символов из алфавита. Практического применения в силу своей сложности такие грамматики не имеют. ===Пример===Продукции: <tex>S \rightarrow aBcc \\B \rightarrow A \\BAA \rightarrow d \\Ac \rightarrow B \\A \rightarrow AAA\ |\ dB \\</tex> Выведем в данной грамматике строку <tex>addd</tex>: <tex>\boldsymbol{S} \Rightarrow a\boldsymbol{B}cc \Rightarrow a\boldsymbol{Ac}c \Rightarrow a\boldsymbol{B}c \Rightarrow a\boldsymbol{Ac} \Rightarrow a\boldsymbol{B} \Rightarrow a\boldsymbol{A} \Rightarrow ad\boldsymbol{B} \Rightarrow ad\boldsymbol{A} \Rightarrow ad\boldsymbol{A}AA \Rightarrow add\boldsymbol{BAA} \Rightarrow addd</tex>
== Класс 1 ==
Класс 1 Первый класс представлен '''неукорачивающими ''' и '''контекстно-зависимыми''' грамматиками.{{Определение|id = Неукорачивающие грамматики|definition ='''Неукорачивающая грамматика''' (англ. ''noncontracting grammar'') {{---}} это формальная грамматика, всякое правило из <tex>P</tex> которой имеет вид <tex>\alpha\rightarrow\beta</tex>, где <tex>\alpha , \beta \in \{\Sigma\cup N\}^{+}</tex> и <tex>|\alpha| \leqslant |\beta|</tex> (возможно правило <tex>S \rightarrow \varepsilon</tex>, но тогда <tex>S</tex> не встречается в правых частях правил).}}
{{Определение
|definition =
'''Неукорачивающие грамматикиКонтекстно-зависимая грамматика''' (англ. ''context-sensitive grammar' ') {{- --}} это [[формальные грамматики]]формальная грамматика, всякое правило из <tex>P</tex> которых которой имеет вид <tex>\alphaA \beta\rightarrow\alpha\gamma\beta</tex>, где <tex>\alpha , \beta \in \{\Sigma\cup N\}^{+*}</tex>, <tex>A \in N</tex> и <tex>\beta gamma \in \{\Sigma\cup N\}^{+}</tex> и <tex>|\alpha|\leq|\beta|</tex>, кроме, (возможно, правило <tex>S \rightarrow \epsilonvarepsilon</tex>. Однако, если такое правило существует, но тогда <tex>S</tex> не встречается в правых частях остальных правил).}}Языки, заданные этими грамматиками, распознаются с помощью '''линейно ограниченного автомата''' (англ. ''linear bounded automaton'') (недетерминированная машина Тьюринга, чья лента ограничена константой, зависящей от длины входа.) [[Неукорачивающие и контекстно-зависимые грамматики, эквивалентность|Известно]], что неукорачивающие грамматики эквивалентны контекстно-зависимым. ===Пример===<tex>L=\{w \in \Sigma^* \mid w = 0^n1^n2^n, n \geqslant 1\}</tex> Продукции:  <tex>S \rightarrow 012 \\S \rightarrow 0AS2 \\A0 \rightarrow 0A \\ A1 \rightarrow 11 </tex> 
== Класс 2 ==
Класс 2 Второй класс составляют [[Контекстно-свободные грамматики, вывод, лево- и правосторонний вывод, дерево разбора|контекстно-свободные грамматики]], которые задают контекстно-свободные языки. Эти языки распознаются с помощью [[Автоматы_с_магазинной_памятью|автоматов с магазинной памятью]].
{{Определение
|definition =
'''Контекстно-свободные грамматикисвободная грамматика''' (англ. ''context- free grammar'') {{---}} это [[формальные грамматики]]формальная грамматика, всякое правило из <tex>P</tex> которых которой имеет вид <tex>A \rightarrow\beta</tex>, где <tex>A\in N </tex>, <tex>\beta \in \{\Sigma \cup N\}^{+}</tex>.}}То есть грамматика допускает появление в левой части правила только одного нетерминального символа. ===Пример===<tex>L=\{w \in \Sigma^* \mid w = w^R\}</tex> (язык палиндромов). Продукции: <tex>S\rightarrow\alpha S\alpha\,|\,\alpha\,|\,\varepsilon, \alpha \in \Sigma</tex> 
== Класс 3 ==
Класс 3 составляют К третьему типу относятся '''автоматные''' или '''регулярные грамматики''' (англ. ''regular grammars'') {{---}} самые простые из формальных грамматик, которые задают [[праволинейныеРегулярные_языки:_два_определения_и_их_эквивалентность|регулярные языки]]. Они являются контекстно-свободными, но с ограниченными возможностями. Все регулярные грамматики могут быть разделены на два эквивалентных класса следующего вида:{{Определение|definition ='''Леволинейная грамматика''' (автоматныеангл. ''left-regular grammar'') грамматики]]{{---}} это формальная грамматика, всякое правило из <tex>P</tex> которой имеет вид <tex>A \rightarrow B\gamma</tex> или <tex>A \rightarrow \gamma</tex>, где <tex>\gamma \in \Sigma, A, B \in N</tex>.}}
{{Определение
|definition =
'''ПраволинейныеПраволинейная грамматика''' (автоматные) грамматикиангл. ''right-regular grammar'' ) {{- --}} это [[формальные грамматики]]формальная грамматика, всякое правило из <tex>P</tex> которых которой имеет вид <tex>A \rightarrow tB\gamma B</tex> либо ; или <tex>A \rightarrow t\gamma</tex>, где <tex>\gamma \in \Sigma, A, B \in N</tex>.}}Оба вида задают одинаковые языки. При этом если правила леволинейной и праволинейной грамматик объединить,то язык уже не обязан быть регулярным. Также можно [[Правоконтекстные_грамматики,_эквивалентность_автоматам|показать]], что множество языков, задаваемых праволинейными грамматиками, совпадает со множеством языков, задаваемых [[Детерминированные конечные автоматы|конечными автоматами]]. ===Пример===<tex>L</tex> для регулярного выражения <tex>B\in Na^*bc^*</tex>, . Продукции: <tex>tS \rightarrow aS\ |\ bA \\A \rightarrow \varepsilon\in |\Sigma cA</tex> == См.также ==* [[Правоконтекстные грамматики, эквивалентность автоматам]]* [[Возможность_порождения_формальной_грамматикой_произвольного_перечислимого_языка|Возможность порождения формальной грамматикой произвольного перечислимого языка]] ==Источники информации==* ''А. Ахо, Дж. Ульман.'' Теория синтаксического анализа, перевода и компиляции. Синтаксический анализ. Том 2. Пер. с англ. — М.: Книга по Требованию, 2012. — ISBN 978-5-458-27407-4* [[wikipedia:Chomsky_hierarchy|Wikipedia {{---}} Chomsky hierarchy]]* [[wikipedia:ru:Иерархия_Хомского|Википедия {{---}}Иерархия Хомского]] [[Категория: Теория формальных языков]][[Категория: Контекстно-свободные грамматики]][[Категория: Базовые понятия о грамматиках]]
295
правок

Навигация