Изменения

Перейти к: навигация, поиск

Мера, порождённая внешней мерой

79 байт добавлено, 09:56, 22 ноября 2011
Нет описания правки
'''1.'''
Сначала проверим аксиомы [[Полукольца и алгебры#Алгебра | алгебры]]:
# <tex> \forall E \subset X: \mu^*(E) \ge \mu^*(E) = \mu^*(\varnothing) + \mu^*(E) = \mu^*(E \cap \varnothing) + \mu^*(E \cap \overline{\varnothing}) </tex>, значит, <tex> \varnothing \in \mathcal{A} </tex>. # Пусть <tex> A \in \mathcal{A} </tex>, тогда <tex> \forall E \subset X: \mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap \overline{A}) = \mu^*(E \cap \overline{A}) + \mu^*(E \cap \overline{\overline{A}}) </tex>, значит, для <tex> \forall A \in \mathcal{A}:\ \overline{A} \in \mathcal{A}</tex>. # Пусть <tex> A, B \in \mathcal{A} </tex>.  #: Заметим, что, так как <tex> \overline{A \cap B} \subset \overline{A\cap B} </tex>, то <tex> E \cap \overline{A} = E \cap \overline{A \cap B} \cap \overline{A} </tex>, и меры этих множеств равны. #: Также, <tex> A \cap \overline{B} = \overline{\overline{A} \cup B} = \overline{(A \cup \overline{A}) \cap (B \cup \overline{A})} = \overline{(A \cap B) \cup \overline{A}} = \overline{A \cap B} \cap A </tex>, и <tex> \mu^*(E \cap A \cap \overline{B}) = \mu^*(E \cap \overline{A \cap B} \cap A) </tex>. #: Тогда <tex> \forall E \subset X: \mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap \overline{A}) = </tex> #: <tex> = \mu^*(E \cap A \cap B) + \mu^*(E \cap A \cap \overline B) + \mu^*(E \cap \overline{A}) = </tex> #: <tex> = \mu^*(E \cap A \cap B) + \mu^*(E \cap \overline{A \cap B} \cap A) + \mu^*(E \cap \overline{A \cap B} \cap \overline{A}) = </tex> #: <tex> = \mu^*(E \cap A \cap B) + \mu^*(E \cap \overline{A \cap B}) </tex>. #: Значит, <tex> A \cap B </tex> тоже хорошо разбивает любое подмножество <tex> X </tex> и принадлежит <tex> \mathcal A </tex>. Мы доказали, что <tex> \mathcal A </tex> - алгебра.
Пусть <tex> A \in \mathcal{A}, A = A_1 \cup A_2 </tex>, проверим, что <tex> \mu^* </tex> конечно-аддитивна.
<tex> \mu^*(A) = \mu^*(A_1 \cup A_2) = \mu^*((A_1 \cup A_2) \cap A_1) + \mu^*((A_1 \cup A_2) \cap \overline{A_1} ) = \mu^*(A_1) + \mu^*(A_2) </tex>.
Мы сделали проверку для двух множеств, дальше можно доказать требуемое для любого конечного числа множеств по индукции.
Но <tex> E \cap B \subset \bigcup\limits_{j=1}^{\infty}(E \cap A_j) </tex>, поэтому <tex> \sum\limits_{j=1}^{\infty}\mu^*(E \cap A_j) \ge \mu^*(E \cap B) </tex>, и <tex> \mu^*(E) \ge \mu^*(E \cap \overline{B}) + \mu^*(E \cap B) </tex>. Требуемое неравенство доказано, <tex> B \in \mathcal A </tex>.
Подставим в <tex> \mu^*(E) \ge \mu^*(E \cap \overline{B}) + \sum\limits_{j=1}^{p} \mu^*(E \cap A_j)\ \ B</tex> вместо <tex> E </tex>, получим <tex> \mu^*(B) \ge \sum\limitslimits_{j=1}^{\infty} \mu^*(A_j) </tex>. Но по <tex> \sigma </tex>-аддитивности внешней меры, <tex> \mu^*(B) \le \sum\limits_{j=1}^{\infty} \mu^*(A_j) </tex>, поэтому <tex> \mu^*(\bigcup\limits_{j=1}^{\infty} A_j) = \sum\limits_{j=1}^{\infty} \mu^*(A_j) </tex>, и <tex> \mu^* </tex> - <tex> \sigma </tex>-аддитивная мера на <tex> \mathcal A </tex>.
Дальше еще две строчки, но, вроде бы, они не нужны.

Навигация