Изменения

Перейти к: навигация, поиск
Нет описания правки
|definition =
Ребро <tex> \langle u, v \rangle \notin G' </tex> называется '''безопасным''', если при добавлении его в <tex> G' </tex>, <tex> G' \cup \{ \langle u, v \rangle \}</tex> также является подграфом некоторого минимального остовного дерева графа <tex> G </tex>.
}}{{Определение|definition =
'''Разрезом''' неориентированного графа <tex> G = \langle V, E \rangle </tex> называется разбиение <tex> V </tex> на два непересекающихся подмножества: <tex> S </tex> и <tex> T = V \setminus S </tex>. Обозначается как <tex> \langle S, T \rangle </tex>.
}}{{Определение|definition =
Ребро <tex> \langle u, v \rangle \in E </tex> '''пересекает разрез''' <tex> \langle S, T \rangle </tex>, если один из его концов принадлежит множеству <tex> S </tex>, а другой {{---}} множеству <tex> T </tex>.
}}
{{Определение|definition = Разрез '''согласован''' с множеством <tex> E' \subset E </tex> по ребрам, если ни одно ребро из <tex> E'</tex> не пересекает разрез.}}{{Определение|definition =Ребро, пересекающее разрез, называется '''легким''', если оно имеет минимальный вес среди всех ребер, пересекающих разрез.}}
==Лемма о безопасном ребре==
{{Теорема
|statement=
Рассмотрим связный неориентированный взвешенный граф <tex> G = \langle V, E \rangle </tex> с весовой функцией <tex>w : E \to \mathbb{R}</tex> Пусть <tex> G' = \langle V, E' \rangle </tex> {{---}} подграф некоторого минимального остовного дерева <tex> G </tex>. <tex> \langle S, T \rangle </tex> {{---}} разрез <tex> G </tex>, согласованный с такой, что ни одно ребро ни одно ребро из <tex> E' </tex> по ребрамне пересекает разрез, а <tex> \langle u, v \rangle </tex> {{---}} легкое реброминимального веса среди всех ребер, пересекающее разрез <tex> \langle S, T \rangle </tex>. Тогда ребро <tex> e = \langle u, v \rangle </tex> является безопасным для <tex> G'</tex>.
|proof=
Достроим <tex> E' </tex> до некоторого минимального остовного дерева, обозначим его <tex>T_{min}</tex>. Если ребро <tex>e \in T_{min}</tex>, то лемма доказана, поэтому рассмотрим случай, когда ребро <tex>e \notin T_{min}</tex>. Рассмотрим путь в <tex>T_{min}</tex> от вершины <tex>u</tex> до вершины <tex>v</tex>. Так как эти вершины принадлежат разным долям разреза, то хотя бы одно ребро пути пересекает разрез, назовем его <tex>e'</tex>. По условию леммы <tex>w(e) \le w(e')</tex>. Заменим ребро <tex>e</tex> в <tex>T_{min}</tex> на ребро <tex>e'</tex>. Полученное дерево также является минимальным остовным деревом графа <tex>G</tex>, поскольку все вершины <tex>G</tex> по-прежнему связаны и вес дерева не увеличился. Следовательно <tex>E' \cup \{e\} </tex> можно дополнить до минимального остовного дерева в графе <tex>G</tex>, то есть ребро <tex>e</tex> {{---}} безопасное.
Анонимный участник

Навигация