Изменения

Перейти к: навигация, поиск

Теорема Карпа-Липтона

28 байт добавлено, 14:25, 3 июня 2010
Нет описания правки
== Доказательство ==
Пусть есть логические схемы для <tex>NP</tex> (для любой задачи из NP). Зафиксируем любую задачу из <tex>NP</tex>. Например пусть <tex>SAT</tex> разрешается логическими схемами <tex> C_1...C_n... </tex> (<tex>SAT</tex> с одним битом разрешается логической схемой <tex>C_1</tex>, <tex>SAT</tex> с двумя переменными логической схемой <tex>C_2</tex> и так далеет.д.).
'''Что значит "разрешается логической схемой"?'''
Это значит что если на вход логической схеме подать каким-то логичным образом закодированную формулу, то на выходе получется логичным образом в виде 0 и 1 закодированный ответ - имеется разложение или нет. И причем размер этой логической схемы <tex>|C_n|\le p(n) </tex>, где <tex>p(n)</tex> - какой-то полином от <tex>n</tex>.
Не Здесь не утверждается, что их эти логические схемы можно как -то конструктивно построить. Если бы их было возможно построить за полином, то это бы означало, что <tex>SAT_2=\Pi_2</tex> и значит <tex>P = NP</tex>.
Итак, это означаетполучается, что если зафиксировать <tex>n</tex>, то для этого фиксированного <tex>n</tex>будет
<tex>\exists{C_n}\forall{} формулы \varphi{} (\varphi{} \in{} SAT |\varphi{}|=n \Leftrightarrow C_n(\varphi{})=1)</tex>
<tex> \exists{C_n} \forall{\varphi{}} (\forall{x} \varphi{(x)}=0 \Leftrightarrow C_n(\varphi{})=0)</tex>, где <tex>x</tex> - вход длины <tex>n</tex>
 
----
Рассмотрим язык <tex>L\in \Pi_2</tex>. Это означает, что <tex>x\in L \Leftrightarrow \forall{y} \exists{z}: \psi{(x,y,x)}</tex>
33
правки

Навигация