Изменения

Перейти к: навигация, поиск

Алгоритм Хаффмана

16 байт добавлено, 20:15, 28 февраля 2012
Корректность алгоритма Хаффмана
Тогда для алфавита <tex>C</tex> существует оптимальный префиксный код, кодовые слова символов <tex>x</tex> и <tex>y</tex> в котором имеют одинаковую максимальную длину и отличаются лишь последним битом.
|proof=
Возьмем дерево <tex>T</tex>, представляющее произвольный оптимальный префиксный код для алфавита <tex>C</tex>. Преобразуем его в дерево, представляющее другой оптимальный префиксный код, в котором символы <tex>x</tex> и <tex>y</tex> - листья с общим родительским узлом, находящиеся на максимальной глубине.
Пусть символы <tex>a</tex> и <tex>b</tex> имеют общий родительский узел и находятся на максимальной глубине дерева <tex>T</tex>. Предположим, что <tex>f[a] \le f[b]</tex> и <tex>f[x] \le f[y]</tex>. Так как <tex>f[x]</tex> и <tex>f[y]</tex> - две наименьшие частоты, а <tex>f[a]</tex> и <tex>f[b]</tex> - две произвольные частоты, то выполняются отношения <tex>f[x] \le f[a]</tex> и <tex>f[y] \le f[b]</tex>. Пусть дерево <tex>T'</tex> - дерево, полученное из <tex>T</tex> путем перестановки листьев <tex>a</tex> и <tex>x</tex>, а дерево <tex>T''</tex> - дерево полученное из <tex>T'</tex> перестановкой листьев <tex>b</tex> и <tex>y</tex>. Разность стоимостей деревьев <tex>T</tex> и <tex>T'</tex> равна:
<tex>B(T) - B(T') = \sum\limits_{c \in C} f(c)d_T(c) - \sum\limits_{c \in C} f(c)d_{T'}(c) = (f[a] - f[x])(d_T(a) - d_T(x)),</tex>
что больше либо равно <tex>0</tex>, так как величины <tex>f[a] - f[x]</tex> и <tex>d_T(a) - d_T(x)</tex> неотрицательны. Величина <tex>f[a] - f[x]</tex> неотрицательна, потому что <tex>x</tex> - лист с минимальной частотой, а величина <tex>d_T(a) - d_T(x)</tex> является неотрицательной, так как лист <tex>a</tex> находится на максимальной глубине в дереве <tex>T</tex>. Точно так же перестановка листьев <tex>y</tex> и <tex>b</tex> не будет приводить к увеличению стоимости. Таким образом, разность <tex>B(T') - B(T'')</tex> тоже будет неотрицательной.
Таким образом, выполняется неравенство <tex>B(T'') \le B(T)</tex>. С другой стороны, <tex>T</tex> - оптимальное дерево, поэтому должно выполняться неравенство <tex>B(T) \le B(T'')</tex>. Отсюда следует, что <tex>B(T) = B(T'')</tex>. Значит, <tex>T''</tex> - дерево, представляющее оптимальный префиксный код, в котором символы <tex>x</tex> и <tex>y</tex> имеют одинаковую максимальную длину, что и доказывает лемму.
}}
Анонимный участник

Навигация