Изменения

Перейти к: навигация, поиск
м
Нет описания правки
|statement=Мультипликативная группа поля <math>\mathbb{Z}/p \mathbb{Z}</math> циклична.
|proof=
Итак, нам требуется доказать существование порождающего элемента для нашей группы {{---}} то есть такого элемента <tex>g</tex>, что <tex>\forall a: 1\leqslant a\leqslant p-1 ;\exists x: g^x=a \pmod p</tex>. Пусть <tex>k=lcm(ord(i))</tex> по всем <tex>i:0 < i\leqslant p-1</tex>. Пусть теперь <tex>k=p_1^{k_1}p_2^{k_2} \cdots p_m^{k_m}</tex>. Тогда из определения <tex>k</tex> и свойств <tex>lcm</tex> следует, что <tex>\exists a:{ }ord(a)\vdots p_i^{k_i}</tex>. Значит, <tex>ord(a)=x \cdot p_i^{k_i}</tex> для некоторого <tex>x</tex>, тогда по второй лемме <tex>ord(a^x)=p_i^{k_i}</tex>. Таким образом, мы можем найти такое число, что его порядок равен <tex>p_i^{k_i}</tex>. Пусть <tex>ord(a_i)=p_i^{k_i}</tex>. Тогда <tex>h= \prod^m_{i=1}a_i</tex> {{---}} искомый элемент. И правда {{---}} <tex>ord(h)=k</tex> {{---}} по первой лемме. Очевидно порядок числа не может быть больше <tex>p-1</tex>, значит <tex>k\leqslant p-1</tex>. С другой стороны условие <tex>x^k=1 \pmod p</tex> выполняется для всех ненулевых вычетов по модулю <tex>p</tex>, которых <tex>p-1</tex> штук, а это уравнение не может иметь более <tex>k</tex> решений (поскольку полином от одной переменной степени <tex>k</tex> не может иметь более <tex>k</tex> корней над [[полеОпределение поля и подполя, изоморфизмы полей|полем]]). Таким образом, <tex>p-1\leqslant k</tex>. Значит,<tex>k=p-1</tex>, что и требовалось.
}}
[[Категория: Теория чисел]]
63
правки

Навигация