Изменения

Перейти к: навигация, поиск

Сортировка Хана

248 байт добавлено, 17:03, 12 июня 2012
Нет описания правки
# Контейнер {{---}} объект, в которым хранятся наши данные. Например: 32-битные и 64-битные числа, массивы, вектора.
# Алгоритм сортирующий <tex>n</tex> целых чисел из множества <tex>\{0, 1, \ldots, m - 1\}</tex> называется консервативным, если длина контейнера (число бит в контейнере), является <tex>O(\log(m + n))</tex>. Если длина больше, то алгоритм неконсервативный.
# Если сортируются целые числа из множества <tex>\{0, 1, ...\ldots, m - 1\}</tex> с длиной контейнера <tex>k \log (m + n)</tex> с <tex>k</tex> <tex>\ge</tex> 1, тогда сортировка происходит с неконсервативным преимуществом <tex>k</tex>.
# Для множества <tex>S</tex> определим
|id=lemma1.
|statement=
Даны целые числа <tex>b</tex> <tex>\ge</tex> <tex>s</tex> <tex>\ge</tex> 0 и <tex>T</tex> является подмножеством <tex>\{0, ...\ldots, 2^b - 1\}<tex>, содержащим <tex>n</tex> элементов, и <tex>t</tex> <tex>\ge</tex> <tex>2^{-s + 1}</tex>С<tex>^k_{n}</tex>. Функция <tex>h_{a}</tex> принадлежащая <tex>H_{b,s}</tex> может быть выбрана за время <tex>O(bn^2)</tex> так, что количество коллизий <tex>coll(h_{a}, T) <tex>\le</tex> t</tex>
}}
Так же, рассмотрим проблему последующего разделения. Пусть <tex>a_{1}</tex>, <tex>a_{2}</tex>, ...\ldots, <tex>a_{p}</tex> {{---}} <tex>p</tex> чисел и <tex>S</tex> {{---}} множество чисeл. Необходимо разделить <tex>S</tex> в <tex>p + 1</tex> наборов таких, что: <tex>S_{0}</tex> < {<tex>a_{1}</tex>} < <tex>S_{1}</tex> < {<tex>a_{2}</tex>} < ... <tex>\ldots</tex> < {<tex>a_{p}</tex>} < <tex>S_{p}</tex>. Т.к. используется signature sorting, до того как делать вышеописанное разделение, необходимо поделить биты в <tex>a_{i}</tex> на <tex>h</tex> сегментов и возьмем некоторые из них. Так же делим биты для каждого числа из <tex>S</tex> и оставим только один в каждом числе. По существу для каждого <tex>a_{i}</tex> берутся все <tex>h</tex> сегментов. Если соответствующие сегменты <tex>a_{i}</tex> и <tex>a_{j}</tex> совпадают, то нам понадобится только один. Сегменты, которые берутся для числа в <tex>S</tex>, {{---}} сегмент, который выделяется из <tex>a_{i}</tex>. Таким образом преобразуется начальная задачу о разделении <tex>n</tex> чисел в <tex>\log m</tex> бит в несколько задач на разделение с числами в <tex>\log (m/h)</tex> бит.
<tex>a_{1}</tex> = 3, <tex>a_{2}</tex> = 5, <tex>a_{3}</tex> = 7, <tex>a_{4}</tex> = 10, S = <tex>\{1, 4, 6, 8, 9, 13, 14\}</tex>.
Делим числа на 2 сегмента. Для <tex>a_{1}</tex> получим верхний сегмент 0, нижний 3; <tex>a_{2}</tex> верхний 1, нижний 1; <tex>a_{3}</tex> верхний 1, нижний 3; <tex>a_{4}</tex> верхний 2, нижний 2. Для элементов из S получим: для 1: нижний 1 т.к. он выделяется из нижнего сегмента <tex>a_{1}</tex>; для 4 нижний 0; для 8 нижний 0; для 9 нижний 1; для 13 верхний 3; для 14 верхний 3. Теперь все верхние сегменты, нижние сегменты 1 и 3, нижние сегменты 4, 5, 6, 7, нижние сегменты 8, 9, 10 формируют 4 новые задачи на разделение.
|id=lemma2.
|statement=
<tex>n</tex> целых чисел можно отсортировать в <tex>\sqrt{n}</tex> наборов <tex>S_{1}</tex>, <tex>S_{2}</tex>, ...<tex>\ldots</tex>, <tex>S_{\sqrt{n}}</tex> таким образом, что в каждом наборе <tex>\sqrt{n}</tex> чисел и <tex>S_{i}</tex> < <tex>S_{j}</tex> при <tex>i</tex> < <tex>j</tex>, за время <tex>O(n \log\log n/ \log k)</tex> и место <tex>O(n)</tex> с не консервативным преимуществом <tex>k \log\log n</tex>
|proof=
Доказательство данной леммы будет приведено далее в тексте статьи.
Выбор <tex>s</tex>-ого наибольшего числа среди <tex>n</tex> чисел упакованных в <tex>n/g</tex> контейнеров может быть сделана за <tex>O(n \log g/g)</tex> время и с использованием <tex>O(n/g)</tex> места. Конкретно медиана может быть так найдена.
|proof=
Так как возможно делать попарное сравнение <tex>g</tex> чисел в одном контейнере с <tex>g</tex> числами в другом и извлекать большие числа из одного контейнера и меньшие из другого за константное время, возможно упаковать медианы из первого, второго, ...<tex>\ldots</tex>, <tex>g</tex>-ого чисел из 5 контейнеров в один контейнер за константное время. Таким образом набор <tex>S</tex> из медиан теперь содержится в <tex>n/(5g)</tex> контейнерах. Рекурсивно находим медиану <tex>m</tex> в <tex>S</tex>. Используя <tex>m</tex> уберем хотя бы <tex>n/4</tex> чисел среди <tex>n</tex>. Затем упакуем оставшиеся из <tex>n/g</tex> контейнеров в <tex>3n/4g</tex> контейнеров и затем продолжим рекурсию.
}}
Рассмотрим проблему сортировки <tex>n</tex> целых чисел из множества <tex>\{0, 1, ...\ldots, m - 1\}</tex> в <tex>\sqrt{n}</tex> наборов как во второй лемме. Предполагая, что в каждом контейнере <tex>k \log\log n \log m</tex> бит и хранит число в <tex>\log m</tex> бит. Поэтому неконсервативное преимущество <tex>k \log \log n</tex>. Так же предполагаем, что <tex>\log m \ge \log n \log\log n</tex>. Иначе можно использовать radix sort для сортировки за время <tex>O(n \log\log n)</tex> и линейную память. Делим <tex>\log m</tex> бит, используемых для представления каждого числа, в <tex>\log n</tex> блоков. Таким образом каждый блок содержит как минимум <tex>\log\log n</tex> бит. <tex>i</tex>-ый блок содержит с <tex>i \log m/ \log n</tex>-ого по <tex>((i + 1) \log m/ \log n - 1)</tex>-ый биты. Биты считаются с наименьшего бита начиная с нуля. Теперь у нас имеется <tex>2 \log n</tex>-уровневый алгоритм, который работает следующим образом:
Algorithm Sort(<tex>k \log\log n</tex>, <tex>level</tex>, <tex>a_{0}</tex>, <tex>a_{1}</tex>, ...<tex>\ldots</tex>, <tex>a_{t}</tex>)
<tex>k \log\log n</tex> это неконсервативное преимущество, <tex>a_{i}</tex>-ые это входящие целые числа в наборе, которые надо отсортировать, <tex>level</tex> это уровень рекурсии.
# От <tex>u = 1</tex> до <tex>k</tex>
## Упаковать <tex>a^{(u)}_{i}</tex>-ый в часть из <tex>1/k</tex>-ых номеров контейнеров, где <tex>a^{(u)}_{i}</tex> содержит несколько непрерывных блоков, которые состоят из <tex>1/k</tex>-ых битов <tex>a_{i}</tex> и у которого текущий блок это самый крупный блок.
## Вызвать Sort(<tex>k \log\log n</tex>, <tex>level - 1</tex>, <tex>a^{(u)}_{0}</tex>, <tex>a^{(u)}_{1}</tex>, ...<tex>\ldots</tex>, <tex>a^{(u)}_{t}</tex>). Когда алгоритм возвращается из этой рекурсии, маркер, показывающий для каждого числа, к которому набору это число относится, уже отправлен назад к месту где число находится во входных данных. Число имеющее наибольшее число бит в <tex>a_{i}</tex>, показывающее на ткущий блок в нем, так же отправлено назад к <tex>a_{i}</tex>.
## Отправить <tex>a_{i}-ые к их наборам, используя лемму шесть.</tex>
Algorithm IterateSort
Call Sort(<tex>k \log\log n</tex>, <tex>\log_{k}((\log n)/4)</tex>, <tex>a_{0}</tex>, <tex>a_{1}</tex>, ...<tex>\ldots</tex>, <tex>a_{n - 1}</tex>);
от 1 до 5
# Поместить <tex>a_{i}</tex> в соответствующий набор с помощью bucket sort потому, что наборов около <tex>\sqrt{n}</tex>
# Для каждого набора <tex>S = </tex>{<tex>a_{i_{0}}, a_{i_{1}}, ...\ldots, a_{i_{t}}</tex>}, если <tex>t > sqrt{n}</tex>, вызвать Sort(<tex>k \log\log n</tex>, <tex>\log_{k}((\log n)/4)</tex>, <tex>a_{i_{0}}, a_{i_{1}}, ...\ldots, a_{i_{t}}</tex>)
Время работы алгоритма <tex>O(n \log\log n/ \log k)</tex>, что доказывает лемму 2.
==Собственно сортировка с использованием O(nloglogn) времени и памяти==
Для сортировки <tex>n</tex> целых чисел в диапазоне от {<tex>0, 1, ...\ldots, m - 1</tex>} предполагается, что используем контейнер длины <tex>O(\log (m + n))</tex> в нашем консервативном алгоритме. Далее всегда считается, что все числа упакованы в контейнеры одинаковой длины.
Берем <tex>1/e = 5</tex> для экспоненциального поискового дереве Андерссона. Поэтому у корня будет <tex>n^{1/5}</tex> детей и каждое ЭП-дерево в каждом ребенке будет иметь <tex>n^{4/5}</tex> листьев. В отличии от оригинального дерева, вставляется не один элемент за раз, а <tex>d^2</tex>, где <tex>d</tex> {{---}} количество детей узла дерева, где числа должны спуститься вниз. Алгоритм полностью опускает все <tex>d^2</tex> чисел на один уровень. В корне опускаются <tex>n^{2/5}</tex> чисел на следующий уровень. После того, как опустились все числа на следующий уровень и они успешно разделились на <tex>t_{1} = n^{1/5}</tex> наборов <tex>S_{1}, S_{2}, ...\ldots, S_{t_{1}}</tex>, в каждом из которых <tex>n^{4/5}</tex> чисел и <tex>S_{i} < S_{j}, i < j</tex>. Затем, берутся <tex>n^{(4/5)(2/5)}</tex> чисел из <tex>S_{i}</tex> и за раз и опускаются на следующий уровень ЭП-дерева. Это повторяется, пока все числа не опустятся на следующий уровень. На этом шаге числа разделены на <tex>t_{2} = n^{1/5}n^{4/25} = n^{9/25}</tex> наборов <tex>T_{1}, T_{2}, ...\ldots, T_{t_{2}}</tex> в каждом из которых <tex>n^{16/25}</tex> чисел, аналогичным наборам <tex>S_{i}</tex>. Теперь числа опускаются дальше в ЭП-дереве.
Спуск вниз можно рассматривать как сортировку <tex>q</tex> чисел в каждом наборе вместе с <tex>p</tex> числами <tex>a_{1}, a_{2}, ...\ldots, a_{p}</tex> из ЭП-дерева, так, что эти <tex>q</tex> чисел разделены в <tex>p + 1</tex> наборов <tex>S_{0}, S_{1}, ...\ldots, S_{p}</tex> таких, что <tex>S_{0} < </tex>{<tex>a_{1}</tex>} < ... <tex>\ldots</tex> < {<tex>a_{p}</tex>}<tex> < S_{p}</tex>.
Для этого воспользуемся signature sorting. Адаптируем этот алгоритм для нас. Предположим у нас есть набор <tex>T</tex> из <tex>p</tex> чисел, которые уже отсортированы как <tex>a_{1}, a_{2}, ...\ldots, a_{p}</tex>, и хотется использовать числа в <tex>T</tex> для разделения <tex>S</tex> из <tex>q</tex> чисел <tex>b_{1}, b_{2}, ...\ldots, b_{q}</tex> в <tex>p + 1</tex> наборов <tex>S_{0}, S_{1}, ...\ldots, S_{p}</tex> что <tex>S_{0}</tex> < {<tex>a_{1}</tex>} < <tex>S_{1}</tex> < ... <tex>\ldots</tex> < {<tex>a_{p}</tex>} < <tex>S_{p}</tex>. Назовем это разделением <tex>q</tex> чисел <tex>p</tex> числами. Пусть <tex>h = \log n/(c \log p)</tex> для константы <tex>c > 1</tex>. <tex>h/ \log\log n \log p</tex> битные числа могут быть хранены в одном контейнере, так что одно слово хранит <tex>(\log n)/(c \log\log n)</tex> бит. Сначала рассматриваем биты в каждом <tex>a_{i}</tex> и каждом <tex>b_{i}</tex> как сегменты одинаковой длины <tex>h/ \log\log n</tex>. Рассматриваем сегменты как числа. Чтобы получить неконсервативное преимущество для сортировки, хэшируются числа в этих контейнерах (<tex>a_{i}</tex>-ом и <tex>b_{i}</tex>-ом), чтобы получить <tex>h/ \log\log n</tex> хэшированных значений в одном контейнере. Чтобы получить значения сразу, при вычислении хэш значений сегменты не влияют друг на друга, можно даже отделить четные и нечетные сегменты в два контейнера. Не умаляя общности считаем, что хэш значения считаются за константное время. Затем, посчитав значения, два контейнера объединяются в один. Пусть <tex>a'_{i}</tex> хэш контейнер для <tex>a_{i}</tex>, аналогично <tex>b'_{i}</tex>. В сумме хэш значения имеют <tex>(2 \log n)/(c \log\log n)</tex> бит. Хотя эти значения разделены на сегменты по <tex>h/ \log\log n</tex> бит в каждом контейнере. Между сегментами получаются пустоты, которые забиваются нулями. Сначала упаковываются все сегменты в <tex>(2 \log n)/(c \log\log n)</tex> бит. Потом рассматриваются каждый хэш контейнер как число и сортируются эти хэш контейнеры за линейное время (сортировка рассмотрена чуть позже). После этой сортировки биты в <tex>a_{i}</tex> и <tex>b_{i}</tex> разрезаны на <tex>\log\log n/h</tex>. Таким образом получилось дополнительное мультипликативное преимущество в <tex>h/ \log\log n</tex> (additional multiplicative advantage).
Хэш функция, которая используется, находится следующим образом. Будут хэшироватся сегменты, которые <tex>\log\log n/h</tex>-ые, <tex>(\log\log n/h)^2</tex>-ые, ... <tex>\ldots</tex> от всего числа. Для сегментов вида <tex>(\log\log n/h)^t</tex>, получаем нарезанием всех <tex>p</tex> чисел на <tex>(\log\log n/h)^t</tex> сегментов. Рассматривая каждый сегмент как число, получится <tex>p(\log\log n/h)^t</tex> чисел. Затем получаем одну хэш функцию для этих чисел. Так как <tex>t < \log n</tex> то, получится не более <tex>\log n</tex> хэш функций.
В итоге разделились <tex>q</tex> чисел <tex>p</tex> числами в каждый набор. То есть, получилось, что <tex>S_{0}</tex> < {<tex>e_{1}</tex>} < <tex>S_{1}</tex> < ... <tex>\ldots</tex> < {<tex>e_{p}</tex>} < <tex>S_{p}</tex>, где <tex>e_{i}</tex> это сегмент <tex>a_{i}</tex> полученный с помощью битового сокращения. Такое разделение получилось комбинированием всех поднаборов в подзадачах. Предполагаем, что числа хранятся в массиве <tex>B</tex> так, что числа в <tex>S_{i}</tex> предшествуют числам в <tex>S_{j}</tex> если <tex>i < j</tex> и <tex>e_{i}</tex> хранится после <tex>S_{i - 1}</tex> но до <tex>S_{i}</tex>. Пусть <tex>B[i]</tex> в поднаборе <tex>B[i].subset</tex>. Чтобы позволить разделению выполнится для каждого поднабора делается следующее.
Помещаем все <tex>B[j]</tex> в <tex>B[j].subset</tex>
Теперь рассмотрим проблему упаковки, которая решается следующим образом. Считается, что число бит в контейнере <tex>\log m \ge \log\log\log n</tex>, потому, что в противном случае можно использовать radix sort для сортировки чисел. У контейнера есть <tex>h/ \log\log n</tex> хэшированных значений (сегментов) в себе на уровне <tex>\log h</tex> в ЭП-дереве. Полное число хэшированных бит в контейнере <tex>(2 \log n)(c \log\log n)</tex> бит. Хотя хэшированны биты в контейнере выглядят как <tex>0^{i}t_{1}0^{i}t_{2}...\ldots t_{h/ \log\log n}</tex>, где <tex>t_{k}</tex>-ые это хэшированные биты, а нули это просто нули. Сначала упаковываем <tex>\log\log n</tex> контейнеров в один и получаем <tex>w_{1} = 0^{j}t_{1, 1}t_{2, 1}...\ldots t_{\log\log n, 1}0^{j}t_{1, 2}...\ldots t_{\log\log n, h/ \log\log n}</tex> где <tex>t_{i, k}</tex>: <tex>k = 1, 2, ... \ldots, h/ \log\log n</tex> из <tex>i</tex>-ого контейнера. Ипользуем <tex>O(\log\log n)</tex> шагов, чтобы упаковать <tex>w_{1}</tex> в <tex>w_{2} = 0^{jh/ \log\log n}t_{1, 1}t_{2, 1} ... \ldots t_{\log\log n, 1}t_{1, 2}t_{2, 2} ... \ldots t_{1, h/ \log\log n}t_{2, h/ \log\log n} ... \ldots t_{\log\log n, h/ \log\log n}</tex>. Теперь упакованные хэш биты занимают <tex>2 \log n/c</tex> бит. Используем <tex>O(\log\log n)</tex> времени чтобы распаковать <tex>w_{2}</tex> в <tex>\log\log n</tex> контейнеров <tex>w_{3, k} = 0^{jh/ \log\log n}0^{r}t_{k, 1}O^{r}t_{k, 2} ... \ldots t_{k, h/ \log\log n} k = 1, 2, ...\ldots, \log\log n</tex>. Затем используя <tex>O(\log\log n)</tex> времени упаковываем эти <tex>\log\log n</tex> контейнеров в один <tex>w_{4} = 0^{r}t_{1, 1}0^{r}t_{1, 2} ... \ldots t_{1, h/ \log\log n}0^{r}t_{2, 1} ... \ldots t_{\log\log n, h/ \log\log n}</tex>. Затем используя <tex>O(\log\log n)</tex> шагов упаковать <tex>w_{4}</tex> в <tex>w_{5} = 0^{s}t_{1, 1}t_{1, 2} ... \ldots t_{1, h/ \log\log n}t_{2, 1}t_{2, 2} ... \ldots t_{\log\log n, h/ \log\log n}</tex>. В итоге используем <tex>O(\log\log n)</tex> времени для упаковки <tex>\log\log n</tex> контейнеров. Считаем что время потраченное на одно слово {{---}} константа.
==Литераура==
81
правка

Навигация