Изменения

Перейти к: навигация, поиск

Интеграл Римана-Стилтьеса

4902 байта добавлено, 20:14, 20 июня 2012
Нет описания правки
}}
Теперь перенесем все это на $g \in V(a, b)$.$ g \in V(a, b)$, $g Свойства функций ограниченной вариации{{TODO|t= g_1 - g_2$ЭТО, $\int\limits_a^b f dg = (def) \int\limits_a^b f dg_1 - \int\limits_a^b f dg_2$. Обладает линейностью и аддитивностьюНАВЕРНОЕ, и так же линейностью по весовой функции: СвойстваНАДО ПЕРЕНЕСТИ В ВАРИАЦИИ?}}:
# $f, g \in V(a, b) \Rightarrow \alpha f + \beta g \in V(a, b) $
# $f, g \in V(a, b) \Rightarrow f g \in V(a, b) $
Все Теперь перенесем все это переносится на функции ограниченной вариации$g \in V(a, b)$$ g \in V(a, b)$, $g = g_1 - g_2$, $\int\limits_a^b f dg = (def) \int\limits_a^b f dg_1 - \int\limits_a^b f dg_2$, причем он не должен зависеть от выбора $g_1$ и $g_2$.
Интеграл Римана-Стилтьеса обладает линейностью и аддитивностью, а также линейностью по весовой функции: $ \int\limits_a^b f d(\alpha g_1 + \beta g_2) = \alpha \int\limits_a^b f dg_1 + \beta \int\limits_a^b f dg_2 $.
{{Теорема
|statement=
Пусть $f$ непрерывна на $[a, b]$, $g \in V(a, b)$. Тогда интеграл Римана-Стилтьеса $ \int\limits_a^b f dg $ существует.
|proof=
Так как $f$ непрерывна на отрезке, то она равномерно непрерывна, то есть $\forall \varepsilon > 0 \exists \delta > 0: |x' - x''| < \delta \Rightarrow |f(x') - f(x'')| < \varepsilon$. Если $\operatorname{rang} \tau < \delta, M_k - m_k \le \varepsilon$
$ \sigma (f, g, \tau) \le \left| \sum\limits_{i=0}^{n-1} (M_k - m_k) \Delta g_k \right| \le \sum\limits_{k=0}^{n-1} \varepsilon | \Delta g_k | = \varepsilon \bigvee\limits_a^b (g, \tau) \xrightarrow[\varepsilon \to 0]{} 0$.
}}
 
Уточним аддитивность интеграла:
# $ \exists \int\limits_a^b f dg, \exists \int\limits_a^c f dg, \exists \int\limits_b^c f dg \Rightarrow \int\limits_a^c = \int\limits_a^b + \int\limits_b^c $
# $ \exists \int\limits_a^d \Rightarrow \exists \int\limits_b^c$, где $ [b, c] \in [a, d]$.
# Для интеграла Римана из существования $\int\limits_a^b $ и $\int\limits_b^c$ следует существование $\int\limits_a^c$. Для интеграла Римана-Стилтьеса в общем случае это неверно.
 
Пример
{{TODO|t=понять и запилить пример}}
 
{{Теорема
|about=
формула интегрирования по частям
|statement=
Пусть существуют $\int\limits_a^b f dg, \int\limits_a^b g df$. Тогда $\int\limits_a^b f dg = fg \bigl|_a^b - \int\limits_a^b g df $.
|proof=
$\omega(f, g, \tau) = \sum\limits_{i=0}^{n-1} f(\xi_k) (g(x_{k + 1}) - g(x_k)) = \\
\sum\limits_{i=0}^{n-1} f(\xi_k) g(x_{k+1}) - \sum\limits_{i=0}^{n-1} f(\xi_k) g(x_k) = \\
\sum\limits_{j=1}^n f(\xi_{j-1}) g(x_j) - \sum\limits_{k=0}^{n-1} f(\xi_k) g(x_k) = \\
f(\xi_{n-1}) g(x_n) - f(\xi_0) g(x_0) + \sum\limits_{j=1}^{n-1} g(x_j) (f(\xi_{j - 1}) - f(\xi_j)) = \\
f(\xi_{n-1}) g(x_n) - f(\xi_0) g(x_0) - \sum\limits_{j=1}^{n-1} g(x_j) (f(\xi_j) - f(\xi_{j-1})) $
Так как интегралы существуют, точки $\xi_j$ можно выбирать как угодно. Примем $\xi_0 = x_0 = a, \xi_{n-1} = x_n = b, \xi_j = x_j, \xi_{j-1} = x_{j-1}$.
Получим $f(x)g(x) \bigl |_a^b - \sigma(g, f, \tau')$. Устремляя $\tau$ к нулю, получим нужную формулу. Из доказательства видно, что нужно только требование существования хотя бы одного их интегралов.
}}
 
{{Утверждение
|statement=
Пусть $f$ непрерывна на $[a, b]$, $f'$ — непрерывна на $(a, b)$, тогда $f$ — функция ограниченной вариации.
|proof=
$|f(x_{k+1}) - f(x_k)| = |f'(\xi_k)| \Delta x_k \le M \Delta x_k$
$ \bigvee\limits_a^b (f, \tau) \le M (b - a) \Rightarrow f \in \bigvee(a, b) $
}}
 
{{Утверждение
|statement=
Пусть $g'$ непрерывна на $[a, b]$ и существует $\int\limits_a^b f(x) g'(x) dx$, тогда существует $\int\limits_a^b f dg$, и его значение совпадает с $\int\limits_a^b f(x) g'(x) dx$/
|proof=
Из предыдущего утверждения, $g'$ — ограниченной вариации, следовательно, $\int\limits_a^b f dg$ существует. Распишем ее интеграл Стилтьеса:
$\sigma(f, g, \tau) = \sum\limits_{k=0}^{n-1} f(\xi_k) (g(x_{k+1}) - g(x_k)) = \sum\limits_{k=0}^{n-1} f(\xi_k) g'(\xi'_k) \Delta x_k $(по формуле Лагранжа) $ = \sum\limits_{k=0}^{n-1} f(\xi_k) g'(\xi_k) \Delta x_k + \sum\limits_{k=0}^{n-1} f(\xi_k) (g'(\xi'_k) - g'(\xi_k)) \Delta x_k $.
 
Первое слагаемое правой части в пределе дает $\int\limits_a^b f(x) g'(x) dx $. Рассмотрим вторую часть:
За счет равномерной непрерывности $g'$, если $\operatorname{rang} \tau < \delta $ и $\xi_k, xi'_k \in [x_k, x_{k+1}]$, следовательно, $|g'(\xi_k) - g'(\xi'_k)| < \varepsilon$.
$ \sum\limits_{k=0}^{n-1} f(\xi_k) (g'(\xi'_k) - g'(\xi_k)) \Delta x_k \le \sum\limits_{k=0}^{n-1} M \varepsilon \Delta x_k = M (b - a) \varepsilon \xrightarrow[\varepsilon \to 0]{} 0$.
}}
 
В качестве применения этой теоремы оценим коэффициенты Фурье $2\pi$-периодической функции $f \in \bigvee(0, 2\pi)$:
 
$a_n(f) = \frac{1}{\pi} \int\limits_{-\pi}^{\pi} f(x) \cos(nx) dx = \\
\frac{1}{\pi n} \int\limits_{-\pi}^{\pi} f(x) d sin(nx) = \frac{1}{\pi n} \left( f(x) \sin(x) \bigl |^{\pi}_{-\pi} - \int\limits_{-\pi}^{\pi} sin(nx) df \right) $
Первое слагаемое после подстановки обнуляется, второе слагаемое оценим сверху как $\bigvee\limits_{-\pi}^{\pi}(f)$. Итак, получили: $|a_n(f)| \le \frac{1}{\pi n} \bigvee\limits_{-\pi}^{\pi}$. Аналогичный результат можно получить для $b_n$.
 
</wikitex>

Навигация